
The Pyramid Web Application
Development Framework
Version 1.2

Chris McDonough

CONTENTS

Front Matter i

Copyright, Trademarks, and Attributions iii
Attributions . iv
Print Production . iv
Contacting The Publisher . iv
HTML Version and Source Code . iv

Typographical Conventions v

Author Introduction vii
Audience . vii
Book Content . viii
The Genesis of repoze.bfg . viii
The Genesis of Pyramid . ix
Thanks . ix

I Narrative Documentation 1

1 Pyramid Introduction 3
1.1 What Makes Pyramid Unique . 4

1.1.1 Single-file applications . 5
1.1.2 Decorator-based configuration . 5
1.1.3 URL generation . 6
1.1.4 Static file serving . 6
1.1.5 Debug Toolbar . 6
1.1.6 Debugging settings . 7
1.1.7 Add-ons . 7

1.1.8 Class-based and function-based views . 7
1.1.9 Asset specifications . 8
1.1.10 Extensible templating . 9
1.1.11 Rendered views can return dictionaries . 9
1.1.12 Event system . 10
1.1.13 Built-in internationalization . 10
1.1.14 HTTP caching . 10
1.1.15 Sessions . 11
1.1.16 Speed . 11
1.1.17 Exception views . 11
1.1.18 No singletons . 12
1.1.19 View predicates and many views per route . 12
1.1.20 Transaction management . 12
1.1.21 Configuration conflict detection . 13
1.1.22 Configuration extensibility . 13
1.1.23 Flexible authentication and authorization . 14
1.1.24 Traversal . 14
1.1.25 Tweens . 14
1.1.26 View response adapters . 15
1.1.27 “Global” response object . 17
1.1.28 Automating repetitive configuration . 17
1.1.29 Testing . 18
1.1.30 Support . 18
1.1.31 Documentation . 19

1.2 What Is The Pylons Project? . 19
1.3 Pyramid and Other Web Frameworks . 19

2 Installing Pyramid 21
2.1 Before You Install . 21

2.1.1 If You Don’t Yet Have A Python Interpreter (UNIX) 21
2.1.2 If You Don’t Yet Have A Python Interpreter (Windows) 23

2.2 Installing Pyramid on a UNIX System . 23
2.2.1 Installing the virtualenv Package . 24
2.2.2 Creating the Virtual Python Environment . 24
2.2.3 Installing Pyramid Into the Virtual Python Environment 25

2.3 Installing Pyramid on a Windows System . 25
2.4 Installing Pyramid on Google App Engine . 26
2.5 Installing Pyramid on Jython . 26
2.6 What Gets Installed . 26

3 Application Configuration 27
3.1 Imperative Configuration . 27
3.2 Declarative Configuration . 28
3.3 Summary . 29

4 Creating Your First Pyramid Application 31
4.1 Hello World . 31

4.1.1 Imports . 32
4.1.2 View Callable Declarations . 32
4.1.3 Application Configuration . 33
4.1.4 Configurator Construction . 33
4.1.5 Adding Configuration . 34
4.1.6 WSGI Application Creation . 34
4.1.7 WSGI Application Serving . 35
4.1.8 Conclusion . 35

4.2 References . 35

5 Creating a Pyramid Project 37
5.1 Scaffolds Included with Pyramid . 37
5.2 Creating the Project . 38
5.3 Installing your Newly Created Project for Development 40
5.4 Running The Tests For Your Application . 41
5.5 Running The Project Application . 42
5.6 Viewing the Application . 43

5.6.1 The Debug Toolbar . 43
5.7 The Project Structure . 45
5.8 The MyProject Project . 46

5.8.1 development.ini . 46
5.8.2 production.ini . 49
5.8.3 MANIFEST.in . 49
5.8.4 setup.py . 50
5.8.5 setup.cfg . 51

5.9 The myproject Package . 52
5.9.1 __init__.py . 53
5.9.2 views.py . 54
5.9.3 resources.py . 55
5.9.4 static . 55
5.9.5 templates/mytemplate.pt . 55
5.9.6 tests.py . 55

5.10 Modifying Package Structure . 56
5.11 Using the Interactive Shell . 57
5.12 Using an Alternate WSGI Server . 58

6 URL Dispatch 59
6.1 High-Level Operational Overview . 59
6.2 Route Configuration . 59

6.2.1 Configuring a Route to Match a View . 60
6.2.2 Route Pattern Syntax . 61
6.2.3 Route Declaration Ordering . 64

6.2.4 Route Configuration Arguments . 65
6.3 Route Matching . 65

6.3.1 The Matchdict . 66
6.3.2 The Matched Route . 66

6.4 Routing Examples . 66
6.4.1 Example 1 . 66
6.4.2 Example 2 . 67
6.4.3 Example 3 . 68

6.5 Matching the Root URL . 69
6.6 Generating Route URLs . 69
6.7 Static Routes . 69
6.8 Redirecting to Slash-Appended Routes . 70

6.8.1 Custom Not Found View With Slash Appended Routes 71
6.9 Debugging Route Matching . 72
6.10 Using a Route Prefix to Compose Applications . 72
6.11 Custom Route Predicates . 74
6.12 Route Factories . 76
6.13 Using Pyramid Security With URL Dispatch . 77
6.14 Route View Callable Registration and Lookup Details 78
6.15 References . 79

7 Views 81
7.1 View Callables . 81
7.2 Defining a View Callable as a Function . 82
7.3 Defining a View Callable as a Class . 82
7.4 View Callable Responses . 83
7.5 Using Special Exceptions In View Callables . 83

7.5.1 HTTP Exceptions . 84
7.5.2 How Pyramid Uses HTTP Exceptions . 85

7.6 Custom Exception Views . 85
7.7 Using a View Callable to Do an HTTP Redirect . 86
7.8 Handling Form Submissions in View Callables (Unicode and Character Set Issues) . . . 87
7.9 Alternate View Callable Argument/Calling Conventions 89
7.10 Pylons-1.0-Style “Controller” Dispatch . 90

8 Renderers 91
8.1 Writing View Callables Which Use a Renderer . 92
8.2 Built-In Renderers . 93

8.2.1 string: String Renderer . 93
8.2.2 json: JSON Renderer . 94

8.3 JSONP Renderer . 94
8.3.1 *.pt or *.txt: Chameleon Template Renderers 96
8.3.2 *.mak or *.mako: Mako Template Renderer 97

8.4 Varying Attributes of Rendered Responses . 98

8.5 Deprecated Mechanism to Vary Attributes of Rendered Responses 99
8.6 Adding and Changing Renderers . 100

8.6.1 Adding a New Renderer . 100
8.6.2 Changing an Existing Renderer . 102

8.7 Overriding A Renderer At Runtime . 103

9 Templates 105
9.1 Using Templates Directly . 105
9.2 System Values Used During Rendering . 109
9.3 Templates Used as Renderers via Configuration . 110
9.4 Chameleon ZPT Templates . 111

9.4.1 A Sample ZPT Template . 112
9.4.2 Using ZPT Macros in Pyramid . 113

9.5 Templating with Chameleon Text Templates . 114
9.6 Side Effects of Rendering a Chameleon Template . 114
9.7 Nicer Exceptions in Chameleon Templates . 115
9.8 Chameleon Template Internationalization . 116
9.9 Templating With Mako Templates . 116

9.9.1 A Sample Mako Template . 117
9.10 Automatically Reloading Templates . 118
9.11 Available Add-On Template System Bindings . 118

10 View Configuration 119
10.1 Mapping a Resource or URL Pattern to a View Callable 119

10.1.1 View Configuration Parameters . 120
10.1.2 Adding View Configuration Using the @view_config Decorator 126
10.1.3 Adding View Configuration Using add_view() 129
10.1.4 Configuring View Security . 130
10.1.5 NotFound Errors . 130

10.2 Influencing HTTP Caching . 130
10.3 Debugging View Configuration . 131

11 Static Assets 133
11.1 Understanding Asset Specifications . 133
11.2 Serving Static Assets . 134

11.2.1 Generating Static Asset URLs . 136
11.3 Advanced: Serving Static Assets Using a View Callable 137

11.3.1 Root-Relative Custom Static View (URL Dispatch Only) 138
11.3.2 Registering A View Callable to Serve a “Static” Asset 139

11.4 Overriding Assets . 139
11.4.1 The override_asset API . 140

12 Request and Response Objects 143
12.1 Request . 144

12.1.1 Special Attributes Added to the Request by Pyramid 145
12.1.2 URLs . 145
12.1.3 Methods . 146
12.1.4 Unicode . 146
12.1.5 Multidict . 146
12.1.6 Dealing With A JSON-Encoded Request Body 147
12.1.7 Cleaning Up After a Request . 148
12.1.8 More Details . 149

12.2 Response . 149
12.2.1 Headers . 150
12.2.2 Instantiating the Response . 150
12.2.3 Exception Responses . 151
12.2.4 More Details . 151

13 Sessions 153
13.1 Using The Default Session Factory . 153
13.2 Using a Session Object . 154
13.3 Using Alternate Session Factories . 155
13.4 Creating Your Own Session Factory . 155
13.5 Flash Messages . 156

13.5.1 Using the session.flash Method . 156
13.5.2 Using the session.pop_flash Method . 157
13.5.3 Using the session.peek_flash Method 157

13.6 Preventing Cross-Site Request Forgery Attacks . 158
13.6.1 Using the session.get_csrf_token Method 158
13.6.2 Using the session.new_csrf_token Method 158

14 Using Events 161
14.1 Configuring an Event Listener Imperatively . 161
14.2 Configuring an Event Listener Using a Decorator . 162
14.3 An Example . 163

15 Environment Variables and .ini File Settings 165
15.1 Reloading Templates . 165
15.2 Reloading Assets . 166
15.3 Debugging Authorization . 166
15.4 Debugging Not Found Errors . 166
15.5 Debugging Route Matching . 166
15.6 Preventing HTTP Caching . 167
15.7 Debugging All . 167
15.8 Reloading All . 167
15.9 Default Locale Name . 167
15.10Including Packages . 168

15.10.1 pyramid.includes vs. pyramid.config.Configurator.include()168

15.11Explicit Tween Configuration . 170
15.11.1 Paste Configuration vs. Plain-Python Configuration 170

15.12Mako Template Render Settings . 171
15.12.1 Mako Directories . 171
15.12.2 Mako Module Directory . 172
15.12.3 Mako Input Encoding . 172
15.12.4 Mako Error Handler . 172
15.12.5 Mako Default Filters . 172
15.12.6 Mako Import . 173
15.12.7 Mako Strict Undefined . 173
15.12.8 Mako Preprocessor . 173

15.13Examples . 173
15.14Understanding the Distinction Between reload_templates and reload_assets 174
15.15Adding A Custom Setting . 175

16 Logging 177
16.1 Logging Configuration . 177
16.2 Sending Logging Messages . 180
16.3 Filtering log messages . 181
16.4 Advanced Configuration . 182
16.5 Logging Exceptions . 182
16.6 Request Logging with Paste’s TransLogger . 182

17 Paste 185
17.1 PasteDeploy . 185

17.1.1 Entry Points and PasteDeploy .ini Files . 186
17.1.2 [DEFAULTS] Section of a PasteDeploy .ini File 188

18 Command-Line Pyramid 189
18.1 Displaying Matching Views for a Given URL . 189
18.2 The Interactive Shell . 191

18.2.1 Extending the Shell . 192
18.2.2 IPython . 194

18.3 Displaying All Application Routes . 194
18.4 Displaying “Tweens” . 195
18.5 Writing a Script . 196

18.5.1 Changing the Request . 198
18.5.2 Cleanup . 199
18.5.3 Setting Up Logging . 199

19 Internationalization and Localization 201
19.1 Creating a Translation String . 201

19.1.1 Using The TranslationString Class . 201
19.1.2 Using the TranslationStringFactory Class 203

19.2 Working With gettext Translation Files . 204
19.2.1 Installing Babel and Lingua . 205
19.2.2 Extracting Messages from Code and Templates 206
19.2.3 Initializing a Message Catalog File . 208
19.2.4 Updating a Catalog File . 209
19.2.5 Compiling a Message Catalog File . 209

19.3 Using a Localizer . 209
19.3.1 Performing a Translation . 210
19.3.2 Performing a Pluralization . 210

19.4 Obtaining the Locale Name for a Request . 211
19.5 Performing Date Formatting and Currency Formatting 212
19.6 Chameleon Template Support for Translation Strings 212
19.7 Mako Pyramid I18N Support . 213
19.8 Localization-Related Deployment Settings . 213
19.9 “Detecting” Available Languages . 214
19.10Activating Translation . 215

19.10.1 Adding a Translation Directory . 215
19.10.2 Setting the Locale . 216

19.11Locale Negotiators . 216
19.11.1 The Default Locale Negotiator . 216
19.11.2 Using a Custom Locale Negotiator . 217

20 Virtual Hosting 219
20.1 Hosting an Application Under a URL Prefix . 219
20.2 Virtual Root Support . 220
20.3 Further Documentation and Examples . 221

21 Unit, Integration, and Functional Testing 223
21.1 Test Set Up and Tear Down . 224

21.1.1 What? . 226
21.2 Using the Configurator and pyramid.testing APIs in Unit Tests 226
21.3 Creating Integration Tests . 228
21.4 Creating Functional Tests . 229

22 Resources 231
22.1 Defining a Resource Tree . 232
22.2 Location-Aware Resources . 233
22.3 Generating The URL Of A Resource . 234

22.3.1 Overriding Resource URL Generation . 235
22.4 Generating the Path To a Resource . 236
22.5 Finding a Resource by Path . 237
22.6 Obtaining the Lineage of a Resource . 237
22.7 Determining if a Resource is In The Lineage of Another Resource 238
22.8 Finding the Root Resource . 239

22.9 Resources Which Implement Interfaces . 239
22.10Finding a Resource With a Class or Interface in Lineage 241
22.11Pyramid API Functions That Act Against Resources . 242

23 Much Ado About Traversal 243
23.1 URL Dispatch . 244
23.2 Historical Refresher . 244
23.3 Traversal (aka Resource Location) . 245
23.4 What Is a “Resource”? . 246
23.5 View Lookup . 247
23.6 Use Cases . 248

24 Traversal 251
24.1 Traversal Details . 251
24.2 The Resource Tree . 252
24.3 The Traversal Algorithm . 254

24.3.1 A Description of The Traversal Algorithm . 255
24.3.2 Traversal Algorithm Examples . 258
24.3.3 Using Resource Interfaces In View Configuration 260

24.4 References . 262

25 Security 263
25.1 Enabling an Authorization Policy . 264

25.1.1 Enabling an Authorization Policy Imperatively 264
25.2 Protecting Views with Permissions . 265

25.2.1 Setting a Default Permission . 265
25.3 Assigning ACLs to your Resource Objects . 266
25.4 Elements of an ACL . 267
25.5 Special Principal Names . 269
25.6 Special Permissions . 269
25.7 Special ACEs . 270
25.8 ACL Inheritance and Location-Awareness . 270
25.9 Changing the Forbidden View . 271
25.10Debugging View Authorization Failures . 271
25.11Debugging Imperative Authorization Failures . 271
25.12Creating Your Own Authentication Policy . 272
25.13Creating Your Own Authorization Policy . 273

26 Combining Traversal and URL Dispatch 275
26.1 A Review of Non-Hybrid Applications . 275

26.1.1 URL Dispatch Only . 275
26.1.2 Traversal Only . 276

26.2 Hybrid Applications . 276
26.2.1 The Root Object for a Route Match . 278

26.2.2 Using *traverse In a Route Pattern . 278
26.2.3 Using the traverse Argument In a Route Definition 281
26.2.4 Using *subpath in a Route Pattern . 282

26.3 Corner Cases . 283
26.3.1 Registering a Default View for a Route That Has a view Attribute 283
26.3.2 Binding Extra Views Against a Route Configuration that Doesn’t Have a

*traverse Element In Its Pattern . 284

27 Using Hooks 285
27.1 Changing the Not Found View . 285
27.2 Changing the Forbidden View . 286
27.3 Changing the Request Factory . 287
27.4 Using The Before Render Event . 288
27.5 Adding Renderer Globals (Deprecated) . 289
27.6 Using Response Callbacks . 290
27.7 Using Finished Callbacks . 290
27.8 Changing the Traverser . 291
27.9 Changing How pyramid.request.Request.resource_url() Generates a URL 293
27.10Changing How Pyramid Treats View Responses . 294
27.11Using a View Mapper . 296
27.12Registering Configuration Decorators . 298
27.13Registering “Tweens” . 299

27.13.1 Creating a Tween Factory . 300
27.13.2 Registering an Implicit Tween Factory . 301
27.13.3 Suggesting Implicit Tween Ordering . 302
27.13.4 Explicit Tween Ordering . 304
27.13.5 Tween Conflicts and Ordering Cycles . 304
27.13.6 Displaying Tween Ordering . 305

28 Advanced Configuration 307
28.1 Conflict Detection . 307

28.1.1 Manually Resolving Conflicts . 309
28.1.2 Automatic Conflict Resolution . 312
28.1.3 Methods Which Provide Conflict Detection . 312

28.2 Including Configuration from External Sources . 312
28.3 Two-Phase Configuration . 313
28.4 Adding Methods to the Configurator via add_directive 314

29 Extending An Existing Pyramid Application 317
29.1 The Difference Between “Extensible” and “Pluggable” Applications 317
29.2 Rules for Building An Extensible Application . 318

29.2.1 Fundamental Plugpoints . 319
29.3 Extending an Existing Application . 319

29.3.1 If The Application Has Configuration Decorations 319

29.3.2 Extending the Application . 320
29.3.3 Overriding Views . 321
29.3.4 Overriding Routes . 322
29.3.5 Overriding Assets . 322

30 Startup 323
30.1 The Startup Process . 323
30.2 Deployment Settings . 326

31 Thread Locals 327
31.1 Why and How Pyramid Uses Thread Local Variables 327
31.2 Why You Shouldn’t Abuse Thread Locals . 328

32 Using the Zope Component Architecture in Pyramid 331
32.1 Using the ZCA Global API in a Pyramid Application 332

32.1.1 Disusing the Global ZCA API . 332
32.1.2 Enabling the ZCA Global API by Using hook_zca 333
32.1.3 Enabling the ZCA Global API by Using The ZCA Global Registry 334

II Tutorials 337

33 ZODB + Traversal Wiki Tutorial 339
33.1 Background . 339
33.2 Installation . 340

33.2.1 Preparation . 340
33.2.2 Making a Project . 342
33.2.3 Installing the Project in “Development Mode” 343
33.2.4 Running the Tests . 343
33.2.5 Starting the Application . 343
33.2.6 Exposing Test Coverage Information . 344
33.2.7 Visit the Application in a Browser . 344
33.2.8 Decisions the pyramid_zodb Scaffold Has Made For You 345

33.3 Basic Layout . 345
33.3.1 App Startup with __init__.py . 345
33.3.2 Resources and Models with models.py . 347
33.3.3 Views With views.py . 347
33.3.4 Configuration in development.ini . 349

33.4 Defining the Domain Model . 350
33.4.1 Deleting the Database . 350
33.4.2 Making Edits to models.py . 351
33.4.3 Looking at the Result of Our Edits to models.py 351
33.4.4 Viewing the Application in a Browser . 352

33.5 Defining Views . 352

33.5.1 Declaring Dependencies in Our setup.py File 353
33.5.2 Adding View Functions . 354
33.5.3 Viewing the Result of all Our Edits to views.py 357
33.5.4 Adding Templates . 359
33.5.5 Viewing the Application in a Browser . 363

33.6 Adding Authorization . 364
33.6.1 Adding Authentication and Authorization Policies 364
33.6.2 Adding security.py . 365
33.6.3 Giving Our Root Resource an ACL . 366
33.6.4 Adding Login and Logout Views . 367
33.6.5 Changing Existing Views . 369
33.6.6 Adding permission Declarations to our view_config Decorators 369
33.6.7 Adding the login.pt Template . 370
33.6.8 Change view.pt and edit.pt . 371
33.6.9 Seeing Our Changes To views.py and our Templates 372
33.6.10 Viewing the Application in a Browser . 376

33.7 Adding Tests . 377
33.7.1 Testing the Models . 377
33.7.2 Testing the Views . 377
33.7.3 Functional tests . 377
33.7.4 Viewing the results of all our edits to tests.py 378
33.7.5 Running the Tests . 382

33.8 Distributing Your Application . 384

34 SQLAlchemy + URL Dispatch Wiki Tutorial 385
34.1 Background . 385
34.2 Installation . 385

34.2.1 Preparation . 386
34.2.2 Making a Project . 387
34.2.3 Installing the Project in “Development Mode” 388
34.2.4 Running the Tests . 388
34.2.5 Starting the Application . 388
34.2.6 Exposing Test Coverage Information . 389
34.2.7 Visit the Application in a Browser . 390
34.2.8 Decisions the pyramid_routesalchemy Scaffold Has Made For You 390

34.3 Basic Layout . 390
34.3.1 App Startup with __init__.py . 390
34.3.2 Content Models with models.py . 393

34.4 Defining the Domain Model . 395
34.4.1 Making Edits to models.py . 396
34.4.2 Looking at the Result of all Our Edits to models.py 397
34.4.3 Viewing the Application in a Browser . 398

34.5 Defining Views . 398

34.5.1 Declaring Dependencies in Our setup.py File 399
34.5.2 Adding View Functions . 400
34.5.3 Viewing the Result of all Our Edits to views.py 404
34.5.4 Adding Templates . 406
34.5.5 Mapping Views to URLs in __init__.py 409
34.5.6 Viewing the Application in a Browser . 411

34.6 Adding Authorization . 411
34.6.1 Changing __init__.py For Authorization 412
34.6.2 Adding security.py . 415
34.6.3 Adding Login and Logout Views . 416
34.6.4 Changing Existing Views . 417
34.6.5 Adding the login.pt Template . 418
34.6.6 Change view.pt and edit.pt . 419
34.6.7 Seeing Our Changes To views.py and our Templates 419
34.6.8 Viewing the Application in a Browser . 424

34.7 Adding Tests . 425
34.7.1 Testing the Models . 425
34.7.2 Testing the Views . 425
34.7.3 Functional tests . 425
34.7.4 Viewing the results of all our edits to tests.py 425
34.7.5 Running the Tests . 431

34.8 Distributing Your Application . 433

35 Converting a repoze.bfg Application to Pyramid 435

36 Running Pyramid on Google’s App Engine 439
36.1 Zipping Files Via Pip . 442

37 Running a Pyramid Application under mod_wsgi 445

III API Reference 449

38 pyramid.authorization 451

39 pyramid.authentication 453
39.1 Authentication Policies . 453
39.2 Helper Classes . 457

40 pyramid.chameleon_text 459

41 pyramid.chameleon_zpt 461

42 pyramid.config 463

43 pyramid.events 497
43.1 Functions . 497
43.2 Event Types . 498

44 pyramid.exceptions 503

45 pyramid.httpexceptions 505
45.1 HTTP Exceptions . 505

46 pyramid.i18n 519

47 pyramid.interfaces 523
47.1 Event-Related Interfaces . 523
47.2 Other Interfaces . 525

48 pyramid.location 537

49 pyramid.paster 539

50 pyramid.registry 541

51 pyramid.renderers 543

52 pyramid.request 547

53 pyramid.response 577
53.1 Functions . 581

54 pyramid.scripting 583

55 pyramid.security 585
55.1 Authentication API Functions . 585
55.2 Authorization API Functions . 586
55.3 Constants . 587
55.4 Return Values . 588

56 pyramid.settings 589

57 pyramid.testing 591

58 pyramid.threadlocal 595

59 pyramid.traversal 597

60 pyramid.url 605

61 pyramid.view 607

62 pyramid.wsgi 611

IV Glossary and Index 613

Glossary 615

Index 629

Front Matter

COPYRIGHT, TRADEMARKS, AND
ATTRIBUTIONS

The Pyramid Web Application Development Framework, Version 1.1

by Chris McDonough

Copyright © 2008-2011, Agendaless Consulting.

ISBN-10: 0615445675

ISBN-13: 978-0615445670

First print publishing: February, 2011

All rights reserved. This material may be copied or distributed only subject to the terms and conditions set
forth in the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. You
must give the original author credit. You may not use this work for commercial purposes. If you alter,
transform, or build upon this work, you may distribute the resulting work only under the same or similar
license to this one.

While the Pyramid documentation is offered under the Creative Commons Attribution-
Nonconmmercial-Share Alike 3.0 United States License, the Pyramid software is offered under a
less restrictive (BSD-like) license .

All terms mentioned in this book that are known to be trademarks or service marks have been appropri-
ately capitalized. However, use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Every effort has been made to make this book as complete and as accurate as possible, but no warranty
or fitness is implied. The information provided is on as “as-is” basis. The author and the publisher shall
have neither liability nor responsibility to any person or entity with respect to any loss or damages arising
from the information contained in this book. No patent liability is assumed with respect to the use of the
information contained herein.

iii

http://creativecommons.org/licenses/by-nc-sa/3.0/us/
http://repoze.org/license.html

Attributions

Editor: Casey Duncan

Contributors: Ben Bangert, Blaise Laflamme, Rob Miller, Mike Orr, Carlos de la Guardia, Paul Everitt,
Tres Seaver, John Shipman, Marius Gedminas, Chris Rossi, Joachim Krebs, Xavier Spriet, Reed
O’Brien, William Chambers, Charlie Choiniere, Jamaludin Ahmad, Graham Higgins, Patricio Paez,
Michael Merickel, Eric Ongerth, Niall O’Higgins, Christoph Zwerschke, John Anderson, Atsushi
Odagiri, Kirk Strauser, JD Navarro, Joe Dallago, Savoir-Faire Linux, Łukasz Fidosz, Christopher
Lambacher, Claus Conrad, Chris Beelby, Phil Jenvey and a number of people with only psuedonyms
on GitHub.

Cover Designer: Hugues Laflamme of Kemeneur.

Used with permission:

The Request and Response Objects chapter is adapted, with permission, from documentation
originally written by Ian Bicking.

The Much Ado About Traversal chapter is adapted, with permission, from an article written
by Rob Miller.

The Logging is adapted, with permission, from the Pylons documentation logging chapter,
originally written by Phil Jenvey.

Print Production

The print version of this book was produced using the Sphinx documentation generation system and the
LaTeX typesetting system.

Contacting The Publisher

Please send documentation licensing inquiries, translation inquiries, and other business communications
to Agendaless Consulting. Please send software and other technical queries to the Pylons-devel maillist.

HTML Version and Source Code

An HTML version of this book is freely available via http://docs.pylonsproject.org

The source code for the examples used in this book are available within the Pyramid software distribution,
always available via https://github.com/Pylons/pyramid

iv

http://www.kemeneur.com/
http://sphinx.pocoo.org/
http://www.latex-project.org/
mailto:webmaster@agendaless.com
http://groups.google.com/group/pylons-devel
http://docs.pylonsproject.org
https://github.com/Pylons/pyramid

TYPOGRAPHICAL CONVENTIONS

Literals, filenames and function arguments are presented using the following style:

argument1

Warnings, which represent limitations and need-to-know information related to a topic or concept are
presented in the following style:

This is a warning.

Notes, which represent additional information related to a topic or concept are presented in the following
style:

This is a note.

We present Python method names using the following style:

pyramid.config.Configurator.add_view()

We present Python class names, module names, attributes and global variables using the following style:

pyramid.config.Configurator.registry

References to glossary terms are presented using the following style:

Pylons

URLs are presented using the following style:

Pylons

References to sections and chapters are presented using the following style:

Traversal

Code and configuration file blocks are presented in the following style:

v

http://pylonsproject.org

1 def foo(abc):
2 pass

When a command that should be typed on one line is too long to fit on a page, the backslash \ is used to
indicate that the following printed line should actually be part of the command:

c:\bigfntut\tutorial> ..\Scripts\nosetests --cover-package=tutorial \
--cover-erase --with-coverage

A sidebar, which presents a concept tangentially related to content discussed on a page, is rendered like
so:

This is a sidebar

Sidebar information.

vi

AUTHOR INTRODUCTION

Welcome to “The Pyramid Web Application Framework”. In this introduction, I’ll describe the audience
for this book, I’ll describe the book content, I’ll provide some context regarding the genesis of Pyramid,
and I’ll thank some important people.

I hope you enjoy both this book and the software it documents. I’ve had a blast writing both.

Audience

This book is aimed primarily at a reader that has the following attributes:

• At least a moderate amount of Python experience.

• A familiarity with web protocols such as HTTP and CGI.

If you fit into both of these categories, you’re in the direct target audience for this book. But don’t worry,
even if you have no experience with Python or the web, both are easy to pick up “on the fly”.

Python is an excellent language in which to write applications; becoming productive in Python is almost
mind-blowingly easy. If you already have experience in another language such as Java, Visual Basic, Perl,
Ruby, or even C/C++, learning Python will be a snap; it should take you no longer than a couple of days
to become modestly productive. If you don’t have previous programming experience, it will be slightly
harder, and it will take a little longer, but you’d be hard-pressed to find a better “first language.”

Web technology familiarity is assumed in various places within the book. For example, the book doesn’t
try to define common web-related concepts like “URL” or “query string.” Likewise, the book describes
various interactions in terms of the HTTP protocol, but it does not describe how the HTTP protocol works
in detail. Like any good web framework, though, Pyramid shields you from needing to know most of the
gory details of web protocols and low-level data structures. As a result, you can usually avoid becoming
“blocked” while you read this book even if you don’t yet deeply understand web technologies.

vii

Book Content

This book is divided into three major parts:

Narrative Documentation

This is documentation which describes Pyramid concepts in narrative form, written in a
largely conversational tone. Each narrative documentation chapter describes an isolated Pyra-
mid concept. You should be able to get useful information out of the narrative chapters if you
read them out-of-order, or when you need only a reminder about a particular topic while
you’re developing an application.

Tutorials

Each tutorial builds a sample application or implements a set of concepts with a sample;
it then describes the application or concepts in terms of the sample. You should read the
tutorials if you want a guided tour of Pyramid.

API Reference

Comprehensive reference material for every public API exposed by Pyramid. The API doc-
umentation is organized alphabetically by module name.

The Genesis of repoze.bfg

Before the end of 2010, Pyramid was known as repoze.bfg.

I wrote repoze.bfg after many years of writing applications using Zope. Zope provided me with a lot
of mileage: it wasn’t until almost a decade of successfully creating applications using it that I decided
to write a different web framework. Although repoze.bfg takes inspiration from a variety of web
frameworks, it owes more of its core design to Zope than any other.

The Repoze “brand” existed before repoze.bfg was created. One of the first packages developed as
part of the Repoze brand was a package named repoze.zope2. This was a package that allowed Zope
2 applications to run under a WSGI server without modification. Zope 2 did not have reasonable WSGI
support at the time.

During the development of the repoze.zope2 package, I found that replicating the Zope 2 “publisher”
– the machinery that maps URLs to code – was time-consuming and fiddly. Zope 2 had evolved over
many years, and emulating all of its edge cases was extremely difficult. I finished the repoze.zope2

viii

package, and it emulates the normal Zope 2 publisher pretty well. But during its development, it became
clear that Zope 2 had simply begun to exceed my tolerance for complexity, and I began to look around for
simpler options.

I considered using the Zope 3 application server machinery, but it turned out that it had become more
indirect than the Zope 2 machinery it aimed to replace, which didn’t fulfill the goal of simplification. I
also considered using Django and Pylons, but neither of those frameworks offer much along the axes of
traversal, contextual declarative security, or application extensibility; these were features I had become
accustomed to as a Zope developer.

I decided that in the long term, creating a simpler framework that retained features I had become accus-
tomed to when developing Zope applications was a more reasonable idea than continuing to use any Zope
publisher or living with the limitations and unfamiliarities of a different framework. The result is what is
now Pyramid.

The Genesis of Pyramid

What was repoze.bfg has become Pyramid as the result of a coalition built between the Repoze and
Pylons community throughout the year 2010. By merging technology, we’re able to reduce duplication
of effort, and take advantage of more of each others’ technology.

Thanks

This book is dedicated to my grandmother, who gave me my first typewriter (a Royal), and my mother,
who bought me my first computer (a VIC-20).

Thanks to the following people for providing expertise, resources, and software. Without the help of
these folks, neither this book nor the software which it details would exist: Paul Everitt, Tres Seaver,
Andrew Sawyers, Malthe Borch, Carlos de la Guardia, Chris Rossi, Shane Hathaway, Daniel Holth,
Wichert Akkerman, Georg Brandl, Blaise Laflamme, Ben Bangert, Casey Duncan, Hugues Laflamme,
Mike Orr, John Shipman, Chris Beelby, Patricio Paez, Simon Oram, Nat Hardwick, Ian Bicking, Jim
Fulton, Michael Merickel, Tom Moroz of the Open Society Institute, and Todd Koym of Environmental
Health Sciences.

Thanks to Guido van Rossum and Tim Peters for Python.

Special thanks to Tricia for putting up with me.

ix

x

Part I

Narrative Documentation

CHAPTER

ONE

PYRAMID INTRODUCTION

Pyramid is a general, open source, Python web application development framework. Its primary goal is
to make it easier for a Python developer to create web applications.

Frameworks vs. Libraries

A framework differs from a library in one very important way: library code is always called by code
that you write, while a framework always calls code that you write. Using a set of libraries to create
an application is usually easier than using a framework initially, because you can choose to cede
control to library code you have not authored very selectively. But when you use a framework, you
are required to cede a greater portion of control to code you have not authored: code that resides in
the framework itself. You needn’t use a framework at all to create a web application using Python. A
rich set of libraries already exists for the platform. In practice, however, using a framework to create
an application is often more practical than rolling your own via a set of libraries if the framework
provides a set of facilities that fits your application requirements.

Pyramid attempts to follow these design and engineering principles:

Simplicity Pyramid takes a “pay only for what you eat” approach. You can get results even if you have
only a partial understanding of Pyramid. It doesn’t force you to use any particular technology to
produce an application, and we try to keep the core set of concepts that you need to understand to
a minimum.

Minimalism Pyramid tries to solve only the fundamental problems of creating a web application: the
mapping of URLs to code, templating, security and serving static assets. We consider these to be
the core activities that are common to nearly all web applications.

3

1. PYRAMID INTRODUCTION

Documentation Pyramid’s minimalism means that it is easier for us to maintain complete and up-to-date
documentation. It is our goal that no aspect of Pyramid is undocumented.

Speed Pyramid is designed to provide noticeably fast execution for common tasks such as templating
and simple response generation. Although “hardware is cheap”, the limits of this approach become
painfully evident when one finds him or herself responsible for managing a great many machines.

Reliability Pyramid is developed conservatively and tested exhaustively. Where Pyramid source code is
concerned, our motto is: “If it ain’t tested, it’s broke”.

Openness As with Python, the Pyramid software is distributed under a permissive open source license.

1.1 What Makes Pyramid Unique

Understandably, people don’t usually want to hear about squishy engineering principles, they want to hear
about concrete stuff that solves their problems. With that in mind, what would make someone want to
use Pyramid instead of one of the many other web frameworks available today? What makes Pyramid
unique?

This is a hard question to answer, because there are lots of excellent choices, and it’s actually quite hard
to make a wrong choice, particularly in the Python web framework market. But one reasonable answer is
this: you can write very small applications in Pyramid without needing to know a lot. “What?”, you say,
“that can’t possibly be a unique feature, lots of other web frameworks let you do that!” Well, you’re right.
But unlike many other systems, you can also write very large applications in Pyramid if you learn a little
more about it. Pyramid will allow you to become productive quickly, and will grow with you; it won’t hold
you back when your application is small and it won’t get in your way when your application becomes
large. “Well that’s fine,” you say, “lots of other frameworks let me write large apps too.” Absolutely.
But other Python web frameworks don’t seamlessly let you do both. They seem to fall into two non-
overlapping categories: frameworks for “small apps” and frameworks for “big apps”. The “small app”
frameworks typically sacrifice “big app” features, and vice versa.

We don’t think it’s a universally reasonable suggestion to write “small apps” in a “small framework” and
“big apps” in a “big framework”. You can’t really know to what size every application will eventually
grow. We don’t really want to have to rewrite a previously small application in another framework when
it gets “too big”. We believe the current binary distinction between frameworks for small and large
applications is just false; a well-designed framework should be able to be good at both. Pyramid strives
to be that kind of framework.

To this end, Pyramid provides a set of features, that, combined, are unique amongst Python web frame-
works. Lots of other frameworks contain some combination of these features; Pyramid of course actually
stole many of them from those other frameworks. But Pyramid is the only one that has all of them in one
place, documented appropriately, and useful a la carte without necessarily paying for the entire banquet.
These are detailed below.

4

http://repoze.org/license.html

1.1. WHAT MAKES PYRAMID UNIQUE

1.1.1 Single-file applications

You can write a Pyramid application that lives entirely in one Python file, not unlike existing Python mi-
croframeworks. This is beneficial for one-off prototyping, bug reproduction, and very small applications.
These applications are easy to understand because all the information about the application lives in a sin-
gle place, and you can deploy them without needing to understand much about Python distributions and
packaging. Pyramid isn’t really marketed as a microframework, but it allows you to do almost everything
that frameworks that are marketed as micro offer in very similar ways.

from paste.httpserver import serve
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
return Response(’Hello %(name)s!’ % request.matchdict)

if __name__ == ’__main__’:
config = Configurator()
config.add_route(’hello’, ’/hello/{name}’)
config.add_view(hello_world, route_name=’hello’)
app = config.make_wsgi_app()
serve(app, host=’0.0.0.0’)

See also Creating Your First Pyramid Application.

1.1.2 Decorator-based configuration

If you like the idea of framework configuration statements living next to the code it configures, so you
don’t have to constantly switch between files to refer to framework configuration when adding new code,
you can use Pyramid decorators to localize the configuration. For example:

from pyramid.view import view_config
from pyramid.response import Response

@view_config(route_name=’fred’)
def fred_view(request):

return Response(’fred’)

However, unlike some other systems, using decorators for Pyramid configuration does not make your
application difficult to extend, test or reuse. The view_config decorator, for example, does not actually
change the input or output of the function it decorates, so testing it is a “WYSIWYG” operation; you don’t

5

1. PYRAMID INTRODUCTION

need to understand the framework to test your own code, you just behave as if the decorator is not there.
You can also instruct Pyramid to ignore some decorators, or use completely imperative configuration
instead of decorators to add views. Pyramid decorators are inert instead of eager: you detect and activate
them with a scan.

Example: Adding View Configuration Using the @view_config Decorator.

1.1.3 URL generation

Pyramid is capable of generating URLs for resources, routes, and static assets. Its URL generation APIs
are easy to use and flexible. If you use Pyramid’s various APIs for generating URLs, you can change your
configuration around arbitrarily without fear of breaking a link on one of your web pages.

Example: Generating Route URLs.

1.1.4 Static file serving

Pyramid is perfectly willing to serve static files itself. It won’t make you use some external web server
to do that. You can even serve more than one set of static files in a single Pyramid web application (e.g.
/static and /static2). You can also, optionally, place your files on an external web server and ask
Pyramid to help you generate URLs to those files, so you can use Pyramid’s internal fileserving while
doing development, and a faster static file server in production without changing any code.

Example: Serving Static Assets.

1.1.5 Debug Toolbar

Pyramid’s debug toolbar comes activated when you use a Pyramid scaffold to render a project. This
toolbar overlays your application in the browser, and allows you access to framework data such as the
routes configured, the last renderings performed, the current set of packages installed, SQLAlchemy
queries run, logging data, and various other facts. When an exception occurs, you can use its interactive
debugger to poke around right in your browser to try to determine the cause of the exception. It’s handy.

Example: The Debug Toolbar.

6

1.1. WHAT MAKES PYRAMID UNIQUE

1.1.6 Debugging settings

Pyramid has debugging settings that allow you to print Pyramid runtime information to the console when
things aren’t behaving as you’re expecting. For example, you can turn on “debug_notfound”, which
prints an informative message to the console every time a URL does not match any view. You can turn on
“debug_authorization”, which lets you know why a view execution was allowed or denied by printing a
message to the console. These features are useful for those WTF moments.

There are also a number of paster commands that allow you to introspect the configuration of your
system: paster proutes shows all configured routes for an application in the order they’ll be eval-
uated for matching; paster pviews shows all configured views for any given URL. These are also
WTF-crushers in some circumstances.

Examples: Debugging View Authorization Failures and Command-Line Pyramid.

1.1.7 Add-ons

Pyramid has an extensive set of add-ons held to the same quality standards as the Pyramid core itself. Add-
ons are packages which provide functionality that the Pyramid core doesn’t. Add-on packages already
exist which let you easily send email, let you use the Jinja2 templating system, let you use XML-RPC or
JSON-RPC, let you integrate with jQuery Mobile, etc.

Examples: https://docs.pylonsproject.org/docs/pyramid.html#pyramid-add-on-documentation

1.1.8 Class-based and function-based views

Pyramid has a structured, unified concept of a view callable. View callables can be functions, methods
of classes, or even instances. When you add a new view callable, you can choose to make it a function
or a method of a class; in either case, Pyramid treats it largely the same way. You can change your mind
later, and move code between methods of classes and functions. A collection of similar view callables
can be attached to a single class as methods, if that floats your boat, and they can share initialization code
as necessary. All kinds of views are easy to understand and use and operate similarly. There is no phony
distinction between them; they can be used for the same purposes.

Here’s a view callable defined as a function:

7

https://docs.pylonsproject.org/docs/pyramid.html#pyramid-add-on-documentation

1. PYRAMID INTRODUCTION

1 from pyramid.response import Response
2 from pyramid.view import view_config
3

4 @view_config(route_name=’aview’)
5 def aview(request):
6 return Response(’one’)

Here’s a few views defined as methods of a class instead:

1 from pyramid.response import Response
2 from pyramid.view import view_config
3

4 class AView(object):
5 def __init__(self, request):
6 self.request = request
7

8 @view_config(route_name=’view_one’)
9 def view_one(request):

10 return Response(’one’)
11

12 @view_config(route_name=’view_two’)
13 def view_two(request):
14 return Response(’two’)

See also @view_config Placement.

1.1.9 Asset specifications

Asset specifications are strings that contain both a Python package name and a file or directory name, e.g.
MyPackage:static/index.html. Use of these specifications is omnipresent in Pyramid. An asset
specification can refer to a template, a translation directory, or any other package-bound static resource.
This makes a system built on Pyramid extensible, because you don’t have to rely on globals (“the static
directory”) or lookup schemes (“the ordered set of template directories”) to address your files. You can
move files around as necessary, and include other packages that may not share your system’s templates or
static files without encountering conflicts.

Because asset specifications are used heavily in Pyramid, we’ve also provided a way to allow users to
override assets. Say you love a system that someone else has created with Pyramid but you just need to
change “that one template” to make it all better. No need to fork the application. Just override the asset
specification for that template with your own inside a wrapper, and you’re good to go.

Examples: Understanding Asset Specifications and Overriding Assets.

8

1.1. WHAT MAKES PYRAMID UNIQUE

1.1.10 Extensible templating

Pyramid has a structured API that allows for pluggability of “renderers”. Templating systems such as
Mako, Genshi, Chameleon, and Jinja2 can be treated as renderers. Renderer bindings for all of these
templating systems already exist for use in Pyramid. But if you’d rather use another, it’s not a big deal.
Just copy the code from an existing renderer package, and plug in your favorite templating system. You’ll
then be able to use that templating system from within Pyramid just as you’d use one of the “built-in”
templating systems.

Pyramid does not make you use a single templating system exclusively. You can use multiple templating
systems, even in the same project.

Example: Using Templates Directly.

1.1.11 Rendered views can return dictionaries

If you use a renderer, you don’t have to return a special kind of “webby” Response object from a view.
Instead, you can return a dictionary instead, and Pyramid will take care of converting that dictionary to
a Response using a template on your behalf. This makes the view easier to test, because you don’t have
to parse HTML in your tests; just make an assertion instead that the view returns “the right stuff” in the
dictionary it returns. You can write “real” unit tests instead of functionally testing all of your views.

For example, instead of:

1 from pyramid.renderers import render_to_response
2

3 def myview(request):
4 return render_to_response(’myapp:templates/mytemplate.pt’, {’a’:1},
5 request=request)

You can do this:

1 from pyramid.view import view_config
2

3 @view_config(renderer=’myapp:templates/mytemplate.pt’)
4 def myview(request):
5 return {’a’:1}

When this view callable is called by Pyramid, the {’a’:1} dictionary will be rendered to a response
on your behalf. The string passed as renderer= above is an asset specification. It is in the form
packagename:directoryname/filename.ext. In this case, it names the mytemplate.pt
file in the templates directory within the myapp Python package. Asset specifications are omnipresent
in Pyramid: see Asset specifications for more information.

Example: Renderers.

9

1. PYRAMID INTRODUCTION

1.1.12 Event system

Pyramid emits events during its request processing lifecycle. You can subscribe any number of listeners to
these events. For example, to be notified of a new request, you can subscribe to the NewRequest event.
To be notified that a template is about to be rendered, you can subscribe to the BeforeRender event,
and so forth. Using an event publishing system as a framework notification feature instead of hardcoded
hook points tends to make systems based on that framework less brittle.

You can also use Pyramid’s event system to send your own events. For example, if you’d like to create
a system that is itself a framework, and may want to notify subscribers that a document has just been
indexed, you can create your own event type (DocumentIndexed perhaps) and send the event via
Pyramid. Users of this framework can then subscribe to your event like they’d subscribe to the events that
are normally sent by Pyramid itself.

Example: Using Events and Event Types.

1.1.13 Built-in internationalization

Pyramid ships with internationalization-related features in its core: localization, pluralization, and creat-
ing message catalogs from source files and templates. Pyramid allows for a plurality of message catalog
via the use of translation domains: you can create a system that has its own translations without conflict
with other translations in other domains.

Example: Internationalization and Localization.

1.1.14 HTTP caching

Pyramid provides an easy way to associate views with HTTP caching policies. You can just tell Pyramid
to configure your view with an http_cache statement, and it will take care of the rest:

@view_config(http_cache=3600) # 60 minutes
def myview(request):

Pyramid will add appropriate Cache-Control and Expires headers to responses generated when
this view is invoked.

See the add_view() method’s http_cache documentation for more information.

10

1.1. WHAT MAKES PYRAMID UNIQUE

1.1.15 Sessions

Pyramid has built-in HTTP sessioning. This allows you to associate data with otherwise anonymous users
between requests. Lots of systems do this. But Pyramid also allows you to plug in your own sessioning
system by creating some code that adheres to a documented interface. Currently there is a binding package
for the third-party Beaker sessioning system that does exactly this. But if you have a specialized need
(perhaps you want to store your session data in MongoDB), you can. You can even switch between
implementations without changing your application code.

Example: Sessions.

1.1.16 Speed

The Pyramid core is, as far as we can tell, at least marginally faster than any other existing Python web
framework. It has been engineered from the ground up for speed. It only does as much work as absolutely
necessary when you ask it to get a job done. Extraneous function calls and suboptimal algorithms in its
core codepaths are avoided. It is feasible to get, for example, between 3500 and 4000 requests per second
from a simple Pyramid view on commodity dual-core laptop hardware and an appropriate WSGI server
(mod_wsgi or gunicorn). In any case, performance statistics are largely useless without requirements and
goals, but if you need speed, Pyramid will almost certainly never be your application’s bottleneck; at least
no more than Python will be a bottleneck.

Example: http://blog.curiasolutions.com/the-great-web-framework-shootout/

1.1.17 Exception views

Exceptions happen. Rather than deal with exceptions that might present themselves to a user in production
in an ad-hoc way, Pyramid allows you to register an exception view. Exception views are like regular
Pyramid views, but they’re only invoked when an exception “bubbles up” to Pyramid itself. For example,
you might register an exception view for the Exception exception, which will catch all exceptions, and
present a pretty “well, this is embarrassing” page. Or you might choose to register an exception view for
only specific kinds of application-specific exceptions, such as an exception that happens when a file is not
found, or an exception that happens when an action cannot be performed because the user doesn’t have
permission to do something. In the former case, you can show a pretty “Not Found” page; in the latter
case you might show a login form.

Example: Custom Exception Views.

11

http://blog.curiasolutions.com/the-great-web-framework-shootout/

1. PYRAMID INTRODUCTION

1.1.18 No singletons

Pyramid is written in such a way that it requires your application to have exactly zero “singleton” data
structures. Or, put another way, Pyramid doesn’t require you to construct any “mutable globals”. Or put
even a different way, an import of a Pyramid application needn’t have any “import-time side effects”. This
is esoteric-sounding, but if you’ve ever tried to cope with parameterizing a Django “settings.py” file for
multiple installations of the same application, or if you’ve ever needed to monkey-patch some framework
fixture so that it behaves properly for your use case, or if you’ve ever wanted to deploy your system using
an asynchronous server, you’ll end up appreciating this feature. It just won’t be a problem. You can
even run multiple copies of a similar but not identically configured Pyramid application within the same
Python process. This is good for shared hosting environments, where RAM is at a premium.

1.1.19 View predicates and many views per route

Unlike many other systems, Pyramid allows you to associate more than one view per route. For example,
you can create a route with the pattern /items and when the route is matched, you can shuffle off the
request to one view if the request method is GET, another view if the request method is POST, etc. A
system known as “view predicates” allows for this. Request method matching is the very most basic thing
you can do with a view predicate. You can also associate views with other request parameters such as the
elements in the query string, the Accept header, whether the request is an XHR request or not, and lots
of other things. This feature allows you to keep your individual views “clean”; they won’t need much
conditional logic, so they’ll be easier to test.

Example: View Configuration Parameters.

1.1.20 Transaction management

Pyramid’s scaffold system renders projects that include a transaction management system, stolen from
Zope. When you use this transaction management system, you cease being responsible for committing
your data anymore. Instead, Pyramid takes care of committing: it commits at the end of a request or
aborts if there’s an exception. Why is that a good thing? Having a centralized place for transaction
management is a great thing. If, instead of managing your transactions in a centralized place, you sprinkle
session.commit calls in your application logic itself, you can wind up in a bad place. Wherever you
manually commit data to your database, it’s likely that some of your other code is going to run after your
commit. If that code goes on to do other important things after that commit, and an error happens in the
later code, you can easily wind up with inconsistent data if you’re not extremely careful. Some data will
have been written to the database that probably should not have. Having a centralized commit point saves
you from needing to think about this; it’s great for lazy people who also care about data integrity. Either
the request completes successfully, and all changes are committed, or it does not, and all changes are
aborted.

12

1.1. WHAT MAKES PYRAMID UNIQUE

Also, Pyramid’s transaction management system allows you to synchronize commits between multiple
databases, and allows you to do things like conditionally send email if a transaction commits, but other-
wise keep quiet.

Example: SQLAlchemy + URL Dispatch Wiki Tutorial (note the lack of commit statements anywhere in
application code).

1.1.21 Configuration conflict detection

When a system is small, it’s reasonably easy to keep it all in your head. But when systems grow large, you
may have hundreds or thousands of configuration statements which add a view, add a route, and so forth.
Pyramid’s configuration system keeps track of your configuration statements, and if you accidentally add
two that are identical, or Pyramid can’t make sense out of what it would mean to have both statements
active at the same time, it will complain loudly at startup time. It’s not dumb though: it will automatically
resolve conflicting configuration statements on its own if you use the configuration include() system:
“more local” statements are preferred over “less local” ones. This allows you to intelligently factor large
systems into smaller ones.

Example: Conflict Detection.

1.1.22 Configuration extensibility

Unlike other systems, Pyramid provides a structured “include” mechanism (see include()) that allows
you to compose applications from multiple Python packages. All the configuration statements that can
be performed in your “main” Pyramid application can also be performed by included packages including
the addition of views, routes, subscribers, and even authentication and authorization policies. You can
even extend or override an existing application by including another application’s configuration in your
own, overriding or adding new views and routes to it. This has the potential to allow you to compose a
big application out of many other smaller ones. For example, if you want to reuse an existing application
that already has a bunch of routes, you can just use the include statement with a route_prefix; the
new application will live within your application at a URL prefix. It’s not a big deal, and requires little
up-front engineering effort.

For example:

1 from pyramid.config import Configurator
2

3 if __name__ == ’__main__’:
4 config = Configurator()
5 config.include(’pyramid_jinja2’)
6 config.include(’pyramid_exclog’)
7 config.include(’some.other.guys.package’, route_prefix=’/someotherguy’)

See also Including Configuration from External Sources and Rules for Building An Extensible Application

13

1. PYRAMID INTRODUCTION

1.1.23 Flexible authentication and authorization

Pyramid includes a flexible, pluggable authentication and authorization system. No matter where your
user data is stored, or what scheme you’d like to use to permit your users to access your data, you can
use a predefined Pyramid plugpoint to plug in your custom authentication and authorization code. If you
want to change these schemes later, you can just change it in one place rather than everywhere in your
code. It also ships with prebuilt well-tested authentication and authorization schemes out of the box. But
what if you don’t want to use Pyramid’s built-in system? You don’t have to. You can just write your own
bespoke security code as you would in any other system.

Example: Enabling an Authorization Policy.

1.1.24 Traversal

Traversal is a concept stolen from Zope. It allows you to create a tree of resources, each of which can be
addressed by one or more URLs. Each of those resources can have one or more views associated with it.
If your data isn’t naturally treelike (or you’re unwilling to create a treelike representation of your data),
you aren’t going to find traversal very useful. However, traversal is absolutely fantastic for sites that need
to be arbitrarily extensible: it’s a lot easier to add a node to a tree than it is to shoehorn a route into an
ordered list of other routes, or to create another entire instance of an application to service a department
and glue code to allow disparate apps to share data. It’s a great fit for sites that naturally lend themselves
to changing departmental hierarchies, such as content management systems and document management
systems. Traversal also lends itself well to systems that require very granular security (“Bob can edit this
document” as opposed to “Bob can edit documents”).

Example: Much Ado About Traversal.

1.1.25 Tweens

Pyramid has a sort of internal WSGI-middleware-ish pipeline that can be hooked by arbitrary add-ons
named “tweens”. The debug toolbar is a “tween”, and the pyramid_tm transaction manager is also.
Tweens are more useful than WSGI middleware in some circumstances because they run in the context
of Pyramid itself, meaning you have access to templates and other renderers, a “real” request object, and
other niceties.

Example: Registering “Tweens”.

14

1.1. WHAT MAKES PYRAMID UNIQUE

1.1.26 View response adapters

A lot is made of the aesthetics of what kinds of objects you’re allowed to return from view callables in
various frameworks. In a previous section in this document we showed you that, if you use a renderer,
you can usually return a dictionary from a view callable instead of a full-on Response object. But some
frameworks allow you to return strings or tuples from view callables. When frameworks allow for this,
code looks slightly prettier, because fewer imports need to be done, and there is less code. For example,
compare this:

1 def aview(request):
2 return "Hello world!"

To this:

1 from pyramid.response import Response
2

3 def aview(request):
4 return Response("Hello world!")

The former is “prettier”, right?

Out of the box, if you define the former view callable (the one that simply returns a string) in Pyramid,
when it is executed, Pyramid will raise an exception. This is because “explicit is better than implicit”, in
most cases, and by default, Pyramid wants you to return a Response object from a view callable. This is
because there’s usually a heck of a lot more to a response object than just its body. But if you’re the kind
of person who values such aesthetics, we have an easy way to allow for this sort of thing:

1 from pyramid.config import Configurator
2 from pyramid.response import Response
3

4 def string_response_adapter(s):
5 response = Response(s)
6 response.content_type = ’text/html’
7 return response
8

9 if __name__ == ’__main__’:
10 config = Configurator()
11 config.add_response_adapter(string_response_adapter, basestring)

Do that once in your Pyramid application at startup. Now you can return strings from any of your view
callables, e.g.:

15

1. PYRAMID INTRODUCTION

1 def helloview(request):
2 return "Hello world!"
3

4 def goodbyeview(request):
5 return "Goodbye world!"

Oh noes! What if you want to indicate a custom content type? And a custom status code? No fear:

1 from pyramid.config import Configurator
2

3 def tuple_response_adapter(val):
4 status_int, content_type, body = val
5 response = Response(body)
6 response.content_type = content_type
7 response.status_int = status_int
8 return response
9

10 def string_response_adapter(body):
11 response = Response(body)
12 response.content_type = ’text/html’
13 response.status_int = 200
14 return response
15

16 if __name__ == ’__main__’:
17 config = Configurator()
18 config.add_response_adapter(string_response_adapter, basestring)
19 config.add_response_adapter(tuple_response_adapter, tuple)

Once this is done, both of these view callables will work:

1 def aview(request):
2 return "Hello world!"
3

4 def anotherview(request):
5 return (403, ’text/plain’, "Forbidden")

Pyramid defaults to explicit behavior, because it’s the most generally useful, but provides hooks that allow
you to adapt the framework to localized aesthetic desires.

See also Changing How Pyramid Treats View Responses.

16

1.1. WHAT MAKES PYRAMID UNIQUE

1.1.27 “Global” response object

“Constructing these response objects in my view callables is such a chore! And I’m way too lazy to
register a response adapter, as per the prior section,” you say. Fine. Be that way:

1 def aview(request):
2 response = request.response
3 response.body = ’Hello world!’
4 response.content_type = ’text/plain’
5 return response

See also Varying Attributes of Rendered Responses.

1.1.28 Automating repetitive configuration

Does Pyramid’s configurator allow you to do something, but you’re a little adventurous and just want it a
little less verbose? Or you’d like to offer up some handy configuration feature to other Pyramid users with-
out requiring that we change Pyramid? You can extend Pyramid’s Configurator with your own directives.
For example, let’s say you find yourself calling pyramid.config.Configurator.add_view()
repetitively. Usually you can take the boring away by using existing shortcuts, but let’s say that this is a
case such a way that no existing shortcut works to take the boring away:

1 from pyramid.config import Configurator
2

3 config = Configurator()
4 config.add_route(’xhr_route’, ’/xhr/{id}’)
5 config.add_view(’my.package.GET_view’, route_name=’xhr_route’,
6 xhr=True, permission=’view’, request_method=’GET’)
7 config.add_view(’my.package.POST_view’, route_name=’xhr_route’,
8 xhr=True, permission=’view’, request_method=’POST’)
9 config.add_view(’my.package.HEAD_view’, route_name=’xhr_route’,

10 xhr=True, permission=’view’, request_method=’HEAD’)

Pretty tedious right? You can add a directive to the Pyramid configurator to automate some of the tedium
away:

1 from pyramid.config import Configurator
2

3 def add_protected_xhr_views(config, module):
4 module = config.maybe_dotted(module)
5 for method in (’GET’, ’POST’, ’HEAD’):

17

1. PYRAMID INTRODUCTION

6 view = getattr(module, ’xhr_%s_view’ % method, None)
7 if view is not None:
8 config.add_view(view, route_name=’xhr_route’, xhr=True,
9 permission=’view’, request_method=method)

10

11 config = Configurator()
12 config.add_directive(’add_protected_xhr_views’, add_protected_xhr_views)

Once that’s done, you can call the directive you’ve just added as a method of the Configurator object:

1 config.add_route(’xhr_route’, ’/xhr/{id}’)
2 config.add_protected_xhr_views(’my.package’)

Your previously repetitive configuration lines have now morphed into one line.

You can share your configuration code with others this way too by packaging it up and calling
add_directive() from within a function called when another user uses the include() method
against your code.

See also Adding Methods to the Configurator via add_directive.

1.1.29 Testing

Every release of Pyramid has 100% statement coverage via unit and integration tests, as measured by the
coverage tool available on PyPI. It also has greater than 95% decision/condition coverage as measured
by the instrumental tool available on PyPI. It is automatically tested by the Jenkins tool on Python
2.5, Python 2.6, Python 2.7, Jython and PyPy after each commit to its GitHub repository. Official Pyramid
add-ons are held to a similar testing standard. We still find bugs in Pyramid and its official add-ons, but
we’ve noticed we find a lot more of them while working on other projects that don’t have a good testing
regime.

Example: http://jenkins.pylonsproject.org/

1.1.30 Support

It’s our goal that no Pyramid question go unanswered. Whether you ask a question on IRC, on the Pylons-
discuss maillist, or on StackOverflow, you’re likely to get a reasonably prompt response. We don’t tolerate
“support trolls” or other people who seem to get their rocks off by berating fellow users in our various
offical support channels. We try to keep it well-lit and new-user-friendly.

Example: Visit irc://freenode.net#pyramid (the #pyramid channel on irc.freenode.net in an IRC client)
or the pylons-discuss maillist at http://groups.google.com/group/pylons-discuss/ .

18

http://jenkins.pylonsproject.org/
http://groups.google.com/group/pylons-discuss/

1.2. WHAT IS THE PYLONS PROJECT?

1.1.31 Documentation

It’s a constant struggle, but we try to maintain a balance between completeness and new-user-friendliness
in the official narrative Pyramid documentation (concrete suggestions for improvement are always ap-
preciated, by the way). We also maintain a “cookbook” of recipes, which are usually demonstrations of
common integration scenarios, too specific to add to the official narrative docs. In any case, the Pyramid
documentation is comprehensive.

Example: The rest of this documentation and the cookbook at
https://docs.pylonsproject.org/projects/pyramid_cookbook/dev/ .

1.2 What Is The Pylons Project?

Pyramid is a member of the collection of software published under the Pylons Project. Pylons software
is written by a loose-knit community of contributors. The Pylons Project website includes details about
how Pyramid relates to the Pylons Project.

1.3 Pyramid and Other Web Frameworks

The first release of Pyramid’s predecessor (named repoze.bfg) was made in July of 2008. At the end
of 2010, we changed the name of repoze.bfg to Pyramid. It was merged into the Pylons project as
Pyramid in November of that year.

Pyramid was inspired by Zope, Pylons (version 1.0) and Django. As a result, Pyramid borrows several
concepts and features from each, combining them into a unique web framework.

Many features of Pyramid trace their origins back to Zope. Like Zope applications, Pyramid applications
can be easily extended: if you obey certain constraints, the application you produce can be reused, mod-
ified, re-integrated, or extended by third-party developers without forking the original application. The
concepts of traversal and declarative security in Pyramid were pioneered first in Zope.

The Pyramid concept of URL dispatch is inspired by the Routes system used by Pylons version 1.0. Like
Pylons version 1.0, Pyramid is mostly policy-free. It makes no assertions about which database you
should use, and its built-in templating facilities are included only for convenience. In essence, it only
supplies a mechanism to map URLs to view code, along with a set of conventions for calling those views.
You are free to use third-party components that fit your needs in your applications.

19

https://docs.pylonsproject.org/projects/pyramid_cookbook/dev/
http://pylonsproject.org

1. PYRAMID INTRODUCTION

The concept of view is used by Pyramid mostly as it would be by Django. Pyramid has a documentation
culture more like Django’s than like Zope’s.

Like Pylons version 1.0, but unlike Zope, a Pyramid application developer may use completely imperative
code to perform common framework configuration tasks such as adding a view or a route. In Zope, ZCML
is typically required for similar purposes. In Grok, a Zope-based web framework, decorator objects
and class-level declarations are used for this purpose. Out of the box, Pyramid supports imperative and
decorator-based configuration; ZCML may be used via an add-on package named pyramid_zcml.

Also unlike Zope and unlike other “full-stack” frameworks such as Django, Pyramid makes no assump-
tions about which persistence mechanisms you should use to build an application. Zope applications are
typically reliant on ZODB; Pyramid allows you to build ZODB applications, but it has no reliance on the
ZODB software. Likewise, Django tends to assume that you want to store your application’s data in a
relational database. Pyramid makes no such assumption; it allows you to use a relational database but
doesn’t encourage or discourage the decision.

Other Python web frameworks advertise themselves as members of a class of web frameworks named
model-view-controller frameworks. Insofar as this term has been claimed to represent a class of web
frameworks, Pyramid also generally fits into this class.

You Say Pyramid is MVC, But Where’s The Controller?

The Pyramid authors believe that the MVC pattern just doesn’t really fit the web very well. In a
Pyramid application, there is a resource tree, which represents the site structure, and views, which
tend to present the data stored in the resource tree and a user-defined “domain model”. However,
no facility provided by the framework actually necessarily maps to the concept of a “controller”
or “model”. So if you had to give it some acronym, I guess you’d say Pyramid is actually an
“RV” framework rather than an “MVC” framework. “MVC”, however, is close enough as a general
classification moniker for purposes of comparison with other web frameworks.

20

http://en.wikipedia.org/wiki/Model\T1\textendash view\T1\textendash controller

CHAPTER

TWO

INSTALLING PYRAMID

2.1 Before You Install

You will need Python version 2.5 or better to run Pyramid.

Python Versions

As of this writing, Pyramid has been tested under Python 2.5.5, Python 2.6.6, and Python 2.7.2.
Pyramid does not run under any version of Python before 2.5, and does not yet run under Python
3.X.

Pyramid is known to run on all popular UNIX-like systems such as Linux, MacOS X, and FreeBSD as
well as on Windows platforms. It is also known to run on Google’s App Engine, PyPy (1.5 and 1.6), and
Jython (2.5.2).

Pyramid installation does not require the compilation of any C code, so you need only a Python interpreter
that meets the requirements mentioned.

2.1.1 If You Don’t Yet Have A Python Interpreter (UNIX)

If your system doesn’t have a Python interpreter, and you’re on UNIX, you can either install Python using
your operating system’s package manager or you can install Python from source fairly easily on any
UNIX system that has development tools.

21

http://python.org

2. INSTALLING PYRAMID

Package Manager Method

You can use your system’s “package manager” to install Python. Every system’s package manager is
slightly different, but the “flavor” of them is usually the same.

For example, on an Ubuntu Linux system, to use the system package manager to install a Python 2.6
interpreter, use the following command:

$ sudo apt-get install python2.6-dev

Once these steps are performed, the Python interpreter will usually be invokable via python2.6 from a
shell prompt.

Source Compile Method

It’s useful to use a Python interpreter that isn’t the “system” Python interpreter to develop your software.
The authors of Pyramid tend not to use the system Python for development purposes; always a self-
compiled one. Compiling Python is usually easy, and often the “system” Python is compiled with options
that aren’t optimal for web development.

To compile software on your UNIX system, typically you need development tools. Often these can be
installed via the package manager. For example, this works to do so on an Ubuntu Linux system:

$ sudo apt-get install build-essential

On Mac OS X, installing XCode has much the same effect.

Once you’ve got development tools installed on your system, you can install a Python 2.6 interpreter from
source, on the same system, using the following commands:

[chrism@vitaminf ~]$ cd ~
[chrism@vitaminf ~]$ mkdir tmp
[chrism@vitaminf ~]$ mkdir opt
[chrism@vitaminf ~]$ cd tmp
[chrism@vitaminf tmp]$ wget \

http://www.python.org/ftp/python/2.6.4/Python-2.6.4.tgz
[chrism@vitaminf tmp]$ tar xvzf Python-2.6.4.tgz
[chrism@vitaminf tmp]$ cd Python-2.6.4
[chrism@vitaminf Python-2.6.4]$./configure \

--prefix=$HOME/opt/Python-2.6.4
[chrism@vitaminf Python-2.6.4]$ make; make install

Once these steps are performed, the Python interpreter will be invokable via
$HOME/opt/Python-2.6.4/bin/python from a shell prompt.

22

http://developer.apple.com/tools/xcode/

2.2. INSTALLING PYRAMID ON A UNIX SYSTEM

2.1.2 If You Don’t Yet Have A Python Interpreter (Windows)

If your Windows system doesn’t have a Python interpreter, you’ll need to install it by downloading a
Python 2.6-series interpreter executable from python.org’s download section (the files labeled “Windows
Installer”). Once you’ve downloaded it, double click on the executable and accept the defaults during the
installation process. You may also need to download and install the Python for Windows extensions.

After you install Python on Windows, you may need to add the C:\Python26 directory to
your environment’s Path in order to make it possible to invoke Python from a command prompt by
typing python. To do so, right click My Computer, select Properties –> Advanced Tab –>
Environment Variables and add that directory to the end of the Path environment variable.

2.2 Installing Pyramid on a UNIX System

It is best practice to install Pyramid into a “virtual” Python environment in order to obtain isolation
from any “system” packages you’ve got installed in your Python version. This can be done by using
the virtualenv package. Using a virtualenv will also prevent Pyramid from globally installing versions of
packages that are not compatible with your system Python.

To set up a virtualenv in which to install Pyramid, first ensure that setuptools is installed. Invoke import
setuptools within the Python interpreter you’d like to run Pyramid under:

[chrism@vitaminf pyramid]$ python
Python 2.6.5 (r265:79063, Apr 29 2010, 00:31:32)
[GCC 4.4.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import setuptools

If running import setuptools does not raise an ImportError, it means that setuptools is already
installed into your Python interpreter. If import setuptools fails, you will need to install setuptools
manually. Note that above we’re using a Python 2.6-series interpreter on Mac OS X; your output may
differ if you’re using a later Python version or a different platform.

If you are using a “system” Python (one installed by your OS distributor or a 3rd-party packager such
as Fink or MacPorts), you can usually install the setuptools package by using your system’s package
manager. If you cannot do this, or if you’re using a self-installed version of Python, you will need to
install setuptools “by hand”. Installing setuptools “by hand” is always a reasonable thing to do, even if
your package manager already has a pre-chewed version of setuptools for installation.

To install setuptools by hand, first download ez_setup.py then invoke it using the Python interpreter into
which you want to install setuptools.

23

http://python.org/download/
http://sourceforge.net/projects/pywin32/files/
http://peak.telecommunity.com/dist/ez_setup.py

2. INSTALLING PYRAMID

$ python ez_setup.py

Once this command is invoked, setuptools should be installed on your system. If the command fails due
to permission errors, you may need to be the administrative user on your system to successfully invoke
the script. To remediate this, you may need to do:

$ sudo python ez_setup.py

2.2.1 Installing the virtualenv Package

Once you’ve got setuptools installed, you should install the virtualenv package. To install the virtualenv
package into your setuptools-enabled Python interpreter, use the easy_install command.

$ easy_install virtualenv

This command should succeed, and tell you that the virtualenv package is now installed. If it fails due to
permission errors, you may need to install it as your system’s administrative user. For example:

$ sudo easy_install virtualenv

2.2.2 Creating the Virtual Python Environment

Once the virtualenv package is installed in your Python, you can then create a virtual environment. To do
so, invoke the following:

$ virtualenv --no-site-packages env
New python executable in env/bin/python
Installing setuptools.............done.

Using --no-site-packages when generating your virtualenv is very important. This flag
provides the necessary isolation for running the set of packages required by Pyramid. If you do
not specify --no-site-packages, it’s possible that Pyramid will not install properly into the
virtualenv, or, even if it does, may not run properly, depending on the packages you’ve already got
installed into your Python’s “main” site-packages dir.

24

2.3. INSTALLING PYRAMID ON A WINDOWS SYSTEM

do not use sudo to run the virtualenv script. It’s perfectly acceptable (and desirable) to
create a virtualenv as a normal user.

You should perform any following commands that mention a “bin” directory from within the env vir-
tualenv dir.

2.2.3 Installing Pyramid Into the Virtual Python Environment

After you’ve got your env virtualenv installed, you may install Pyramid itself using the following com-
mands from within the virtualenv (env) directory you created in the last step.

$ cd env
$ bin/easy_install pyramid

The easy_install command will take longer than the previous ones to complete, as it downloads and
installs a number of dependencies.

2.3 Installing Pyramid on a Windows System

1. Install, or find Python 2.6 for your system.

2. Install the Python for Windows extensions. Make sure to pick the right download for Python 2.6
and install it using the same Python installation from the previous step.

3. Install latest setuptools distribution into the Python you obtained/installed/found in the step above:
download ez_setup.py and run it using the python interpreter of your Python 2.6 installation using
a command prompt:

c:\> c:\Python26\python ez_setup.py

4. Use that Python’s bin/easy_install to install virtualenv:

c:\> c:\Python26\Scripts\easy_install virtualenv

5. Use that Python’s virtualenv to make a workspace:

25

http://python.org/download/releases/2.6.4/
http://sourceforge.net/projects/pywin32/files/
http://peak.telecommunity.com/dist/ez_setup.py

2. INSTALLING PYRAMID

c:\> c:\Python26\Scripts\virtualenv --no-site-packages env

6. Switch to the env directory:

c:\> cd env

7. (Optional) Consider using Scripts\activate.bat to make your shell environment wired to
use the virtualenv.

8. Use easy_install pointed at the “current” index to get Pyramid and its direct dependencies
installed:

c:\env> Scripts\easy_install pyramid

2.4 Installing Pyramid on Google App Engine

Running Pyramid on Google’s App Engine documents the steps required to install a Pyramid application
on Google App Engine.

2.5 Installing Pyramid on Jython

Pyramid is known to work under Jython version 2.5.1. Install Jython, and then follow the installation
steps for Pyramid on your platform described in one of the sections entitled Installing Pyramid on a
UNIX System or Installing Pyramid on a Windows System above, replacing the python command with
jython as necessary. The steps are exactly the same except you should use the jython command name
instead of the python command name.

One caveat exists to using Pyramid under Jython: the Chameleon templating engine does not work on
Jython. However, the Mako templating system, which is also included with Pyramid, does work under
Jython; use it instead.

2.6 What Gets Installed

When you easy_install Pyramid, various Zope libraries, various Chameleon libraries, WebOb,
Paste, PasteScript, and PasteDeploy libraries are installed.

Additionally, as chronicled in Creating a Pyramid Project, scaffolds will be registered, which make it
easy to start a new Pyramid project.

26

CHAPTER

THREE

APPLICATION CONFIGURATION

Most people already understand “configuration” as settings that influence the operation of an application.
For instance, it’s easy to think of the values in a .ini file parsed at application startup time as “configu-
ration”. However, if you’re reasonably open-minded, it’s easy to think of code as configuration too. Since
Pyramid, like most other web application platforms, is a framework, it calls into code that you write (as
opposed to a library, which is code that exists purely for you to call). The act of plugging application
code that you’ve written into Pyramid is also referred to within this documentation as “configuration”;
you are configuring Pyramid to call the code that makes up your application.

There are two ways to configure a Pyramid application: imperative configuration and declarative config-
uration. Both are described below.

3.1 Imperative Configuration

“Imperative configuration” just means configuration done by Python statements, one after the next. Here’s
one of the simplest Pyramid applications, configured imperatively:

1 from paste.httpserver import serve
2 from pyramid.config import Configurator
3 from pyramid.response import Response
4

5 def hello_world(request):
6 return Response(’Hello world!’)
7

8 if __name__ == ’__main__’:
9 config = Configurator()

10 config.add_view(hello_world)
11 app = config.make_wsgi_app()
12 serve(app, host=’0.0.0.0’)

27

3. APPLICATION CONFIGURATION

We won’t talk much about what this application does yet. Just note that the “configuration’ statements
take place underneath the if __name__ == ’__main__’: stanza in the form of method calls on a
Configurator object (e.g. config.add_view(...)). These statements take place one after the other,
and are executed in order, so the full power of Python, including conditionals, can be employed in this
mode of configuration.

3.2 Declarative Configuration

It’s sometimes painful to have all configuration done by imperative code, because often the code for a
single application may live in many files. If the configuration is centralized in one place, you’ll need to
have at least two files open at once to see the “big picture”: the file that represents the configuration, and
the file that contains the implementation objects referenced by the configuration. To avoid this, Pyramid
allows you to insert configuration decoration statements very close to code that is referred to by the
declaration itself. For example:

1 from pyramid.response import Response
2 from pyramid.view import view_config
3

4 @view_config(name=’hello’, request_method=’GET’)
5 def hello(request):
6 return Response(’Hello’)

The mere existence of configuration decoration doesn’t cause any configuration registration to be per-
formed. Before it has any effect on the configuration of a Pyramid application, a configuration decoration
within application code must be found through a process known as a scan.

For example, the pyramid.view.view_config decorator in the code example above adds an at-
tribute to the hello function, making it available for a scan to find it later.

A scan of a module or a package and its subpackages for decorations happens when the
pyramid.config.Configurator.scan() method is invoked: scanning implies searching for
configuration declarations in a package and its subpackages. For example:

28

3.3. SUMMARY

Starting A Scan

1 from paste.httpserver import serve
2 from pyramid.response import Response
3 from pyramid.view import view_config
4

5 @view_config()
6 def hello(request):
7 return Response(’Hello’)
8

9 if __name__ == ’__main__’:
10 from pyramid.config import Configurator
11 config = Configurator()
12 config.scan()
13 app = config.make_wsgi_app()
14 serve(app, host=’0.0.0.0’)

The scanning machinery imports each module and subpackage in a package or module recursively, look-
ing for special attributes attached to objects defined within a module. These special attributes are typically
attached to code via the use of a decorator. For example, the view_config decorator can be attached
to a function or instance method.

Once scanning is invoked, and configuration decoration is found by the scanner, a set of calls are made
to a Configurator on your behalf: these calls replace the need to add imperative configuration statements
that don’t live near the code being configured.

The combination of configuration decoration and the invocation of a scan is collectively known as declar-
ative configuration.

In the example above, the scanner translates the arguments to view_config into a call to the
pyramid.config.Configurator.add_view() method, effectively:

1 config.add_view(hello)

3.3 Summary

There are two ways to configure a Pyramid application: declaratively and imperatively. You can choose
the mode you’re most comfortable with; both are completely equivalent. Examples in this documentation
will use both modes interchangeably.

29

3. APPLICATION CONFIGURATION

30

CHAPTER

FOUR

CREATING YOUR FIRST PYRAMID
APPLICATION

In this chapter, we will walk through the creation of a tiny Pyramid application. After we’re finished
creating the application, we’ll explain in more detail how it works.

4.1 Hello World

Here’s one of the very simplest Pyramid applications:

1 from paste.httpserver import serve
2 from pyramid.config import Configurator
3 from pyramid.response import Response
4

5 def hello_world(request):
6 return Response(’Hello %(name)s!’ % request.matchdict)
7

8 if __name__ == ’__main__’:
9 config = Configurator()

10 config.add_route(’hello’, ’/hello/{name}’)
11 config.add_view(hello_world, route_name=’hello’)
12 app = config.make_wsgi_app()
13 serve(app, host=’0.0.0.0’)

When this code is inserted into a Python script named helloworld.py and executed by a Python
interpreter which has the Pyramid software installed, an HTTP server is started on TCP port 8080:

31

4. CREATING YOUR FIRST PYRAMID APPLICATION

$ python helloworld.py
serving on 0.0.0.0:8080 view at http://127.0.0.1:8080

When port 8080 is visited by a browser on the URL /hello/world, the server will simply serve up
the text “Hello world!”

Press Ctrl-C to stop the application.

Now that we have a rudimentary understanding of what the application does, let’s examine it piece-by-
piece.

4.1.1 Imports

The above helloworld.py script uses the following set of import statements:

1 from paste.httpserver import serve
2 from pyramid.config import Configurator
3 from pyramid.response import Response

The script imports the Configurator class from the pyramid.config module. An instance of the
Configurator class is later used to configure your Pyramid application.

Like many other Python web frameworks, Pyramid uses the WSGI protocol to connect an application and
a web server together. The paste.httpserver server is used in this example as a WSGI server for
convenience, as the paste package is a dependency of Pyramid itself.

The script also imports the pyramid.response.Response class for later use. An instance of this
class will be used to create a web response.

4.1.2 View Callable Declarations

The above script, beneath its set of imports, defines a function named hello_world.

1 def hello_world(request):
2 return Response(’Hello %(name)s!’ % request.matchdict)

32

4.1. HELLO WORLD

This function doesn’t do anything very difficult. The functions accepts a single argument (request).
The hello_world function returns an instance of the pyramid.response.Response. The single
argument to the class’ constructor is value computed from arguments matched from the url route. This
value becomes the body of the response.

This function is known as a view callable. A view callable accepts a single argument, request. It is
expected to return a response object. A view callable doesn’t need to be a function; it can be represented
via another type of object, like a class or an instance, but for our purposes here, a function serves us well.

A view callable is always called with a request object. A request object is a representation of an HTTP
request sent to Pyramid via the active WSGI server.

A view callable is required to return a response object because a response object has all the information
necessary to formulate an actual HTTP response; this object is then converted to text by the WSGI server
which called Pyramid and it is sent back to the requesting browser. To return a response, each view
callable creates an instance of the Response class. In the hello_world function, a string is passed
as the body to the response.

4.1.3 Application Configuration

In the above script, the following code represents the configuration of this simple application. The ap-
plication is configured using the previously defined imports and function definitions, placed within the
confines of an if statement:

1 if __name__ == ’__main__’:
2 config = Configurator()
3 config.add_route(’hello’, ’/hello/{name}’)
4 config.add_view(hello_world, route_name=’hello’)
5 app = config.make_wsgi_app()
6 serve(app, host=’0.0.0.0’)

Let’s break this down piece-by-piece.

4.1.4 Configurator Construction

1 if __name__ == ’__main__’:
2 config = Configurator()

33

4. CREATING YOUR FIRST PYRAMID APPLICATION

The if __name__ == ’__main__’: line in the code sample above represents a Python idiom: the
code inside this if clause is not invoked unless the script containing this code is run directly from the
operating system command line. For example, if the file named helloworld.py contains the entire
script body, the code within the if statement will only be invoked when python helloworld.py is
executed from the command line.

Using the if clause is necessary – or at least best practice – because code in a Python .py file may be
eventually imported via the Python import statement by another .py file. .py files that are imported
by other .py files are referred to as modules. By using the if __name__ == ’main’: idiom, the
script above is indicating that it does not want the code within the if statement to execute if this module is
imported from another; the code within the if block should only be run during a direct script execution.

The config = Configurator() line above creates an instance of the Configurator class. The
resulting config object represents an API which the script uses to configure this particular Pyramid
application. Methods called on the Configurator will cause registrations to be made in an application
registry associated with the application.

4.1.5 Adding Configuration

1 config.add_route(’hello’, ’/hello/{name}’)
2 config.add_view(hello_world, route_name=’hello’)

First line above calls the pyramid.config.Configurator.add_route() method, which regis-
ters a route to match any url path that begins with /hello/ followed by a string.

The second line, config.add_view(hello_world, route_name=’hello’), registers the
hello_world function as a view callable and makes sure that it will be called when the hello route
is matched.

4.1.6 WSGI Application Creation

1 app = config.make_wsgi_app()

After configuring views and ending configuration, the script creates a WSGI application via the
pyramid.config.Configurator.make_wsgi_app() method. A call to make_wsgi_app
implies that all configuration is finished (meaning all method calls to the configurator which set up views,
and various other configuration settings have been performed). The make_wsgi_app method returns
a WSGI application object that can be used by any WSGI server to present an application to a requestor.

34

4.2. REFERENCES

WSGI is a protocol that allows servers to talk to Python applications. We don’t discuss WSGI in any depth
within this book, however, you can learn more about it by visiting wsgi.org.

The Pyramid application object, in particular, is an instance of a class representing a Pyramid router. It
has a reference to the application registry which resulted from method calls to the configurator used to
configure it. The router consults the registry to obey the policy choices made by a single application.
These policy choices were informed by method calls to the Configurator made earlier; in our case, the
only policy choices made were implied by calls to its add_view and add_route methods.

4.1.7 WSGI Application Serving

1 serve(app, host=’0.0.0.0’)

Finally, we actually serve the application to requestors by starting up a WSGI server. We happen to use
the paste.httpserver.serve() WSGI server runner, passing it the app object (a router) as the
application we wish to serve. We also pass in an argument host==’0.0.0.0’, meaning “listen on all
TCP interfaces.” By default, the Paste HTTP server listens only on the 127.0.0.1 interface, which is
problematic if you’re running the server on a remote system and you wish to access it with a web browser
from a local system. We don’t specify a TCP port number to listen on; this means we want to use the
default TCP port, which is 8080.

When this line is invoked, it causes the server to start listening on TCP port 8080. The server will serve
requests forever, or at least until we stop it by killing the process which runs it (usually by pressing
Ctrl-C in the terminal we used to start it).

4.1.8 Conclusion

Our hello world application is one of the simplest possible Pyramid applications, configured “impera-
tively”. We can see that it’s configured imperatively because the full power of Python is available to us as
we perform configuration tasks.

4.2 References

For more information about the API of a Configurator object, see Configurator .

For more information about view configuration, see View Configuration.

35

http://wsgi.org

4. CREATING YOUR FIRST PYRAMID APPLICATION

36

CHAPTER

FIVE

CREATING A PYRAMID PROJECT

As we saw in Creating Your First Pyramid Application, it’s possible to create a Pyramid application
completely manually. However, it’s usually more convenient to use a scaffold to generate a basic Pyramid
project.

A project is a directory that contains at least one Python package. You’ll use a scaffold to create a project,
and you’ll create your application logic within a package that lives inside the project. Even if your
application is extremely simple, it is useful to place code that drives the application within a package,
because: 1) a package is more easily extended with new code and 2) an application that lives inside a
package can also be distributed more easily than one which does not live within a package.

Pyramid comes with a variety of scaffolds that you can use to generate a project. Each scaffold makes
different configuration assumptions about what type of application you’re trying to construct.

These scaffolds are rendered using the PasteDeploy paster create command.

5.1 Scaffolds Included with Pyramid

The convenience scaffolds included with Pyramid differ from each other on a number of axes:

• the persistence mechanism they offer (no persistence mechanism, ZODB, or SQLAlchemy).

• the mechanism they use to map URLs to code (traversal or URL dispatch).

• whether or not the pyramid_beaker library is relied upon as the sessioning implementation (as
opposed to no sessioning or default sessioning).

37

5. CREATING A PYRAMID PROJECT

The included scaffolds are these:

pyramid_starter URL mapping via traversal and no persistence mechanism.

pyramid_zodb URL mapping via traversal and persistence via ZODB.

pyramid_routesalchemy URL mapping via URL dispatch and persistence via SQLAlchemy

pyramid_alchemy URL mapping via traversal and persistence via SQLAlchemy

At this time, each of these scaffolds uses the Chameleon templating system, which is incom-
patible with Jython. To use scaffolds to build applications which will run on Jython, you can try the
pyramid_jinja2_starter scaffold which ships as part of the pyramid_jinja2 package. You
can also just use any above scaffold and replace the Chameleon template it includes with a Mako
analogue.

Rather than use any of the above scaffolds, Pylons 1 users may feel more comfortable installing the Akhet
development environment, which provides a scaffold named akhet. This scaffold configures a Pyramid
application in a “Pylons-esque” way, including the use of a view handler to map URLs to code (a handler
is much like a Pylons “controller”).

5.2 Creating the Project

In Installing Pyramid, you created a virtual Python environment via the virtualenv command. To
start a Pyramid project, use the paster facility installed within the virtualenv. In Installing Pyramid we
called the virtualenv directory env; the following command assumes that our current working directory
is that directory. We’ll choose the pyramid_starter scaffold for this purpose.

On UNIX:

$ bin/paster create -t pyramid_starter

Or on Windows:

$ Scripts\paster.exe create -t pyramid_starter

The above command uses the paster create command to create a project with the
pyramid_starter scaffold. To use a different scaffold, such as pyramid_routesalchemy,
you’d just change the last argument. For example, on UNIX:

38

5.2. CREATING THE PROJECT

$ bin/paster create -t pyramid_routesalchemy

Or on Windows:

$ Scripts\paster.exe create -t pyramid_routesalchemy

paster create will ask you a single question: the name of the project. You should use a string
without spaces and with only letters in it. Here’s sample output from a run of paster create on
UNIX for a project we name MyProject:

$ bin/paster create -t pyramid_starter
Selected and implied templates:

pyramid#pyramid_starter pyramid starter project

Enter project name: MyProject
Variables:

egg: MyProject
package: myproject
project: MyProject

Creating template pyramid
Creating directory ./MyProject
... more output ...
Running /Users/chrism/projects/pyramid/bin/python setup.py egg_info

You can skip the interrogative question about a project name during paster create by
adding the project name to the command line, e.g. paster create -t pyramid_starter
MyProject.

You may encounter an error when using paster create if a depen-
dent Python package is not installed. This will result in a traceback ending in
pkg_resources.DistributionNotFound: <package name>. Simply run
bin/easy_install (or Script\easy_install.exe on Windows), with the missing
package name from the error message to work around this issue.

As a result of invoking the paster create command, a project is created in a directory named
MyProject. That directory is a project directory. The setup.py file in that directory can be used
to distribute your application, or install your application for deployment or development.

39

5. CREATING A PYRAMID PROJECT

A PasteDeploy .ini file named development.ini will be created in the project directory. You will
use this .ini file to configure a server, to run your application, and to debug your application. It sports
configuration that enables an interactive debugger and settings optimized for development.

Another PasteDeploy .ini file named production.ini will also be created in the project directory.
It sports configuration that disables any interactive debugger (to prevent inappropriate access and disclo-
sure), and turns off a number of debugging settings. You can use this file to put your application into
production.

The MyProject project directory contains an additional subdirectory named myproject (note the
case difference) representing a Python package which holds very simple Pyramid sample code. This is
where you’ll edit your application’s Python code and templates.

5.3 Installing your Newly Created Project for Development

To install a newly created project for development, you should cd to the newly created project directory
and use the Python interpreter from the virtualenv you created during Installing Pyramid to invoke the
command python setup.py develop

The file named setup.py will be in the root of the paster-generated project directory. The python
you’re invoking should be the one that lives in the bin (or Scripts on Windows) directory of your
virtual Python environment. Your terminal’s current working directory must be the newly created project
directory.

On UNIX:

$ cd MyProject
$../bin/python setup.py develop

Or on Windows:

$ cd MyProject
$..\Scripts\python.exe setup.py develop

Elided output from a run of this command on UNIX is shown below:

$ cd MyProject
$../bin/python setup.py develop
...
Finished processing dependencies for MyProject==0.0

This will install a distribution representing your project into the interpreter’s library set so it can be found
by import statements and by PasteDeploy commands such as paster serve, paster pshell,
paster proutes and paster pviews.

40

5.4. RUNNING THE TESTS FOR YOUR APPLICATION

5.4 Running The Tests For Your Application

To run unit tests for your application, you should invoke them using the Python interpreter from the
virtualenv you created during Installing Pyramid (the python command that lives in the bin directory
of your virtualenv).

On UNIX:

$../bin/python setup.py test -q

Or on Windows:

$..\Scripts\python.exe setup.py test -q

Here’s sample output from a test run on UNIX:

$../bin/python setup.py test -q
running test
running egg_info
writing requirements to MyProject.egg-info/requires.txt
writing MyProject.egg-info/PKG-INFO
writing top-level names to MyProject.egg-info/top_level.txt
writing dependency_links to MyProject.egg-info/dependency_links.txt
writing entry points to MyProject.egg-info/entry_points.txt
reading manifest file ’MyProject.egg-info/SOURCES.txt’
writing manifest file ’MyProject.egg-info/SOURCES.txt’
running build_ext
..
--
Ran 1 test in 0.108s

OK

The -q option is passed to the setup.py test command to limit the output to a stream of
dots. If you don’t pass -q, you’ll see more verbose test result output (which normally isn’t very
useful).

The tests themselves are found in the tests.py module in your paster create -generated project.
Within a project generated by the pyramid_starter scaffold, a single sample test exists.

41

5. CREATING A PYRAMID PROJECT

5.5 Running The Project Application

Once a project is installed for development, you can run the application it represents using the
paster serve command against the generated configuration file. In our case, this file is named
development.ini.

On UNIX:

$../bin/paster serve development.ini

On Windows:

$..\Scripts\paster.exe serve development.ini

Here’s sample output from a run of paster serve on UNIX:

$../bin/paster serve development.ini
Starting server in PID 16601.
serving on 0.0.0.0:6543 view at http://127.0.0.1:6543

By default, Pyramid applications generated from a scaffold will listen on TCP port 6543. You can shut
down a server started this way by pressing Ctrl-C.

During development, it’s often useful to run paster serve using its --reload option. When
--reload is passed to paster serve, changes to any Python module your project uses will cause
the server to restart. This typically makes development easier, as changes to Python code made within a
Pyramid application is not put into effect until the server restarts.

For example, on UNIX:

$../bin/paster serve development.ini --reload
Starting subprocess with file monitor
Starting server in PID 16601.
serving on 0.0.0.0:6543 view at http://127.0.0.1:6543

For more detailed information about the startup process, see Startup. For more information about environ-
ment variables and configuration file settings that influence startup and runtime behavior, see Environment
Variables and .ini File Settings.

42

5.6. VIEWING THE APPLICATION

5.6 Viewing the Application

Once your application is running via paster serve, you may visit http://localhost:6543/
in your browser. You will see something in your browser like what is displayed in the following image:

This is the page shown by default when you visit an unmodified paster create -generated
pyramid_starter application in a browser.

5.6.1 The Debug Toolbar

If you click on the image shown at the right hand top of the page (“^DT”), you’ll be presented with a
debug toolbar that provides various niceties while you’re developing. This image will float above every

43

5. CREATING A PYRAMID PROJECT

HTML page served by Pyramid while you develop an application, and allows you show the toolbar as
necessary. Click on Hide to hide the toolbar and show the image again.

For more information about what the debug toolbar allows you to do, see the documentation for pyra-
mid_debugtoolbar.

The debug toolbar will not be shown (and all debugging will be turned off) when you use the
production.ini file instead of the development.ini ini file to run the application.

You can also turn the debug toolbar off by editing development.ini and commenting out the line
pyramid.includes = pyramid_debugtoolbar. For example, instead of:

[app:main]
...
pyramid.includes = pyramid_debugtoolbar

44

http://docs.pylonsproject.org/projects/pyramid_debugtoolbar/dev/
http://docs.pylonsproject.org/projects/pyramid_debugtoolbar/dev/

5.7. THE PROJECT STRUCTURE

Put a hash mark in front of the pyramid.includes line:

[app:main]
...
#pyramid.includes = pyramid_debugtoolbar

Then restart the application to see that the toolbar has been turned off.

5.7 The Project Structure

The pyramid_starter scaffold generated a project (named MyProject), which contains a Python
package. The package is also named myproject, but it’s lowercased; the scaffold generates a project
which contains a package that shares its name except for case.

All Pyramid paster -generated projects share a similar structure. The MyProject project we’ve
generated has the following directory structure:

MyProject/
|-- CHANGES.txt
|-- development.ini
|-- MANIFEST.in
|-- myproject
| |-- __init__.py
| |-- resources.py
| |-- static
| | |-- favicon.ico
| | |-- logo.png
| | ‘-- pylons.css
| |-- templates
| | ‘-- mytemplate.pt
| |-- tests.py
| ‘-- views.py
|-- production.ini
|-- README.txt
|-- setup.cfg
‘-- setup.py

45

5. CREATING A PYRAMID PROJECT

5.8 The MyProject Project

The MyProject project directory is the distribution and deployment wrapper for your application. It
contains both the myproject package representing your application as well as files used to describe,
run, and test your application.

1. CHANGES.txt describes the changes you’ve made to the application. It is conventionally written
in ReStructuredText format.

2. README.txt describes the application in general. It is conventionally written in ReStructuredText
format.

3. development.ini is a PasteDeploy configuration file that can be used to execute your applica-
tion during development.

4. production.ini is a PasteDeploy configuration file that can be used to execute your application
in a production configuration.

5. setup.cfg is a setuptools configuration file used by setup.py.

6. MANIFEST.in is a distutils “manifest” file, naming which files should be included in a source
distribution of the package when python setup.py sdist is run.

7. setup.py is the file you’ll use to test and distribute your application. It is a standard setuptools
setup.py file.

5.8.1 development.ini

The development.ini file is a PasteDeploy configuration file. Its purpose is to specify an application
to run when you invoke paster serve, as well as the deployment settings provided to that application.

The generated development.ini file looks like so:

1 [app:main]
2 use = egg:MyProject
3

4 pyramid.reload_templates = true
5 pyramid.debug_authorization = false
6 pyramid.debug_notfound = false
7 pyramid.debug_routematch = false
8 pyramid.debug_templates = true

46

5.8. THE MYPROJECT PROJECT

9 pyramid.default_locale_name = en
10 pyramid.includes = pyramid_debugtoolbar
11

12 [server:main]
13 use = egg:Paste#http
14 host = 0.0.0.0
15 port = 6543
16

17 # Begin logging configuration
18

19 [loggers]
20 keys = root, myproject
21

22 [handlers]
23 keys = console
24

25 [formatters]
26 keys = generic
27

28 [logger_root]
29 level = INFO
30 handlers = console
31

32 [logger_myproject]
33 level = DEBUG
34 handlers =
35 qualname = myproject
36

37 [handler_console]
38 class = StreamHandler
39 args = (sys.stderr,)
40 level = NOTSET
41 formatter = generic
42

43 [formatter_generic]
44 format = %(asctime)s %(levelname)-5.5s [%(name)s] %(message)s
45

46 # End logging configuration

This file contains several sections including [app:main], [server:main] and several other sections
related to logging configuration.

The [app:main] section represents configuration for your Pyramid application. The use setting is the
only setting required to be present in the [app:main] section. Its default value, egg:MyProject,
indicates that our MyProject project contains the application that should be served. Other settings
added to this section are passed as keyword arguments to the function named main in our package’s

47

5. CREATING A PYRAMID PROJECT

__init__.py module. You can provide startup-time configuration parameters to your application by
adding more settings to this section.

See Entry Points and PasteDeploy .ini Files for more information about the meaning of the use
= egg:MyProject value in this section.

The pyramid.reload_templates setting in the [app:main] section is a Pyramid -specific set-
ting which is passed into the framework. If it exists, and its value is true, Chameleon and Mako template
changes will not require an application restart to be detected. See Automatically Reloading Templates for
more information.

The pyramid.debug_templates setting in the [app:main] section is a Pyramid -specific setting
which is passed into the framework. If it exists, and its value is true, Chameleon template exceptions
will contain more detailed and helpful information about the error than when this value is false. See
Nicer Exceptions in Chameleon Templates for more information.

The pyramid.reload_templates and pyramid.debug_templates options should
be turned off for production applications, as template rendering is slowed when either is turned on.

The pyramid.includes setting in the [app:main] section tells Pyramid to “include” configuration
from another package. In this case, the line pyramid.includes = pyramid_debugtoolbar
tells Pyramid to include configuration from the pyramid_debugtoolbar package. This turns on a
debugging panel in development mode which will be shown on the right hand side of the screen. Including
the debug toolbar will also make it possible to interactively debug exceptions when an error occurs.

Various other settings may exist in this section having to do with debugging or influencing runtime be-
havior of a Pyramid application. See Environment Variables and .ini File Settings for more information
about these settings.

The name main in [app:main] signifies that this is the default application run by paster serve
when it is invoked against this configuration file. The name main is a convention used by PasteDeploy
signifying that it is the default application.

The [server:main] section of the configuration file configures a WSGI server which listens on TCP
port 6543. It is configured to listen on all interfaces (0.0.0.0). This means that any remote system
which has TCP access to your system can see your Pyramid application.

The sections that live between the markers # Begin logging configuration and # End
logging configuration represent Python’s standard library logging module configuration for
your application. The sections between these two markers are passed to the logging module’s config file
configuration engine when the paster serve or paster pshell commands are executed. The
default configuration sends application logging output to the standard error output of your terminal. For
more information about logging configuration, see Logging.

See the PasteDeploy documentation for more information about other types of things you can put into this
.ini file, such as other applications, middleware and alternate WSGI server implementations.

48

http://docs.python.org/howto/logging.html#configuring-logging
http://docs.python.org/howto/logging.html#configuring-logging

5.8. THE MYPROJECT PROJECT

5.8.2 production.ini

The production.ini file is a PasteDeploy configuration file with a purpose much like that of
development.ini. However, it disables the debug toolbar, and filters all log messages except those
above the WARN level. It also turns off template development options such that templates are not au-
tomatically reloaded when changed, and turns off all debugging options. This file is appropriate to use
instead of development.ini when you put your application into production.

It’s important to use production.ini (and not development.ini) to benchmark your application
and put it into production. development.ini configures your system with a debug toolbar that helps
development, but the inclusion of this toolbar slows down page rendering times by over an order of
magnitude. The debug toolbar is also a potential security risk if you have it configured incorrectly.

5.8.3 MANIFEST.in

The MANIFEST.in file is a distutils configuration file which specifies the non-Python files that should
be included when a distribution of your Pyramid project is created when you run python setup.py
sdist. Due to the information contained in the default MANIFEST.in, an sdist of your Pyramid project
will include .txt files, .ini files, .rst files, graphics files, and template files, as well as .py files.
See http://docs.python.org/distutils/sourcedist.html#the-manifest-in-template for more information about
the syntax and usage of MANIFEST.in.

Without the presence of a MANIFEST.in file or without checking your source code into a version
control repository, setup.py sdist places only Python source files (files ending with a .py ex-
tension) into tarballs generated by python setup.py sdist. This means, for example, if your
project was not checked into a setuptools-compatible source control system, and your project direc-
tory didn’t contain a MANIFEST.in file that told the sdist machinery to include *.pt files, the
myproject/templates/mytemplate.pt file would not be included in the generated tarball.

Projects generated by Pyramid scaffolds include a default MANIFEST.in file. The MANIFEST.in
file contains declarations which tell it to include files like *.pt, *.css and *.js in the gen-
erated tarball. If you include files with extensions other than the files named in the project’s
MANIFEST.in and you don’t make use of a setuptools-compatible version control system, you’ll need
to edit the MANIFEST.in file and include the statements necessary to include your new files. See
http://docs.python.org/distutils/sourcedist.html#principle for more information about how to do this.

You can also delete MANIFEST.in from your project and rely on a setuptools feature which simply
causes all files checked into a version control system to be put into the generated tarball. To allow this to
happen, check all the files that you’d like to be distributed along with your application’s Python files into
Subversion. After you do this, when you rerun setup.py sdist, all files checked into the version
control system will be included in the tarball. If you don’t use Subversion, and instead use a different
version control system, you may need to install a setuptools add-on such as setuptools-git or
setuptools-hg for this behavior to work properly.

49

http://docs.python.org/distutils/sourcedist.html#the-manifest-in-template
http://docs.python.org/distutils/sourcedist.html#principle

5. CREATING A PYRAMID PROJECT

5.8.4 setup.py

The setup.py file is a setuptools setup file. It is meant to be run directly from the command line to per-
form a variety of functions, such as testing your application, packaging, and distributing your application.

setup.py is the defacto standard which Python developers use to distribute their reusable code.
You can read more about setup.py files and their usage in the Setuptools documentation and The
Hitchhiker’s Guide to Packaging.

Our generated setup.py looks like this:

1 import os
2

3 from setuptools import setup, find_packages
4

5 here = os.path.abspath(os.path.dirname(__file__))
6 README = open(os.path.join(here, ’README.txt’)).read()
7 CHANGES = open(os.path.join(here, ’CHANGES.txt’)).read()
8

9 requires = [’pyramid’, ’pyramid_debugtoolbar’]
10

11 setup(name=’MyProject’,
12 version=’0.0’,
13 description=’MyProject’,
14 long_description=README + ’\n\n’ + CHANGES,
15 classifiers=[
16 "Programming Language :: Python",
17 "Framework :: Pylons",
18 "Topic :: Internet :: WWW/HTTP",
19 "Topic :: Internet :: WWW/HTTP :: WSGI :: Application",
20],
21 author=’’,
22 author_email=’’,
23 url=’’,
24 keywords=’web pyramid pylons’,
25 packages=find_packages(),
26 include_package_data=True,
27 zip_safe=False,
28 install_requires=requires,
29 tests_require=requires,
30 test_suite="myproject",
31 entry_points = """\
32 [paste.app_factory]
33 main = myproject:main

50

http://peak.telecommunity.com/DevCenter/setuptools
http://guide.python-distribute.org/
http://guide.python-distribute.org/

5.8. THE MYPROJECT PROJECT

34 """,
35 paster_plugins=[’pyramid’],
36)

The setup.py file calls the setuptools setup function, which does various things depending on the
arguments passed to setup.py on the command line.

Within the arguments to this function call, information about your application is kept. While it’s be-
yond the scope of this documentation to explain everything about setuptools setup files, we’ll provide a
whirlwind tour of what exists in this file in this section.

Your application’s name can be any string; it is specified in the name field. The version number is
specified in the version value. A short description is provided in the description field. The
long_description is conventionally the content of the README and CHANGES file appended to-
gether. The classifiers field is a list of Trove classifiers describing your application. author and
author_email are text fields which probably don’t need any description. url is a field that should
point at your application project’s URL (if any). packages=find_packages() causes all packages
within the project to be found when packaging the application. include_package_data will in-
clude non-Python files when the application is packaged if those files are checked into version control.
zip_safe indicates that this package is not safe to use as a zipped egg; instead it will always unpack as
a directory, which is more convenient. install_requires and tests_require indicate that this
package depends on the pyramid package. test_suite points at the package for our application,
which means all tests found in the package will be run when setup.py test is invoked. We ex-
amined entry_points in our discussion of the development.ini file; this file defines the main
entry point that represents our project’s application.

Usually you only need to think about the contents of the setup.py file when distributing your applica-
tion to other people, when adding Python package dependencies, or when versioning your application for
your own use. For fun, you can try this command now:

$ python setup.py sdist

This will create a tarball of your application in a dist subdirectory named MyProject-0.1.tar.gz.
You can send this tarball to other people who want to install and use your application.

5.8.5 setup.cfg

The setup.cfg file is a setuptools configuration file. It contains various settings related to testing and
internationalization:

Our generated setup.cfg looks like this:

51

http://pypi.python.org/pypi?%3Aaction=list_classifiers

5. CREATING A PYRAMID PROJECT

1 [nosetests]
2 match = ^test
3 nocapture = 1
4 cover-package = myproject
5 with-coverage = 1
6 cover-erase = 1
7

8 [compile_catalog]
9 directory = myproject/locale

10 domain = MyProject
11 statistics = true
12

13 [extract_messages]
14 add_comments = TRANSLATORS:
15 output_file = myproject/locale/MyProject.pot
16 width = 80
17

18 [init_catalog]
19 domain = MyProject
20 input_file = myproject/locale/MyProject.pot
21 output_dir = myproject/locale
22

23 [update_catalog]
24 domain = MyProject
25 input_file = myproject/locale/MyProject.pot
26 output_dir = myproject/locale
27 previous = true

The values in the default setup file allow various commonly-used internationalization commands and
testing commands to work more smoothly.

5.9 The myproject Package

The myproject package lives inside the MyProject project. It contains:

1. An __init__.py file signifies that this is a Python package. It also contains code that helps
users run the application, including a main function which is used as a Paste entry point.

2. A resources.py module, which contains resource code.

3. A templates directory, which contains Chameleon (or other types of) templates.

52

5.9. THE MYPROJECT PACKAGE

4. A tests.py module, which contains unit test code for the application.

5. A views.py module, which contains view code for the application.

These are purely conventions established by the scaffold: Pyramid doesn’t insist that you name things in
any particular way. However, it’s generally a good idea to follow Pyramid standards for naming, so that
other Pyramid developers can get up to speed quickly on your code when you need help.

5.9.1 __init__.py

We need a small Python module that configures our application and which advertises an entry point
for use by our PasteDeploy .ini file. This is the file named __init__.py. The presence of an
__init__.py also informs Python that the directory which contains it is a package.

1 from pyramid.config import Configurator
2 from myproject.resources import Root
3

4 def main(global_config, **settings):
5 """ This function returns a Pyramid WSGI application.
6 """
7 config = Configurator(root_factory=Root, settings=settings)
8 config.add_view(’myproject.views.my_view’,
9 context=’myproject.resources.Root’,

10 renderer=’myproject:templates/mytemplate.pt’)
11 config.add_static_view(’static’, ’myproject:static’)
12 return config.make_wsgi_app()

1. Line 1 imports the Configurator class from pyramid.config that we use later.

2. Line 2 imports the Root class from myproject.resources that we use later.

3. Lines 4-12 define a function named main that returns a Pyramid WSGI application. This function
is meant to be called by the PasteDeploy framework as a result of running paster serve.

Within this function, application configuration is performed.

Lines 8-10 register a “default view” (a view that has no name attribute). It is reg-
istered so that it will be found when the context of the request is an instance of the
myproject.resources.Root class. The first argument to add_view points at a Python
function that does all the work for this view, also known as a view callable, via a dotted Python
name. The view declaration also names a renderer, which in this case is a template that
will be used to render the result of the view callable. This particular view declaration points at

53

5. CREATING A PYRAMID PROJECT

myproject:templates/mytemplate.pt, which is a asset specification that specifies the
mytemplate.pt file within the templates directory of the myproject package. The tem-
plate file it actually points to is a Chameleon ZPT template file.

Line 11 registers a static view, which will serve up the files from the mypackage:static asset
specification (the static directory of the mypackage package).

Line 12 returns a WSGI application to the caller of the function (Paste).

5.9.2 views.py

Much of the heavy lifting in a Pyramid application is done by view callables. A view callable is the main
tool of a Pyramid web application developer; it is a bit of code which accepts a request and which returns
a response.

1 def my_view(request):
2 return {’project’:’MyProject’}

This bit of code was registered as the view callable within __init__.py (via add_view). add_view
said that the default URL for instances that are of the class myproject.resources.Root should
run this myproject.views.my_view() function.

This view callable function is handed a single piece of information: the request. The request is an instance
of the WebOb Request class representing the browser’s request to our server.

This view returns a dictionary. When this view is invoked, a renderer converts the dictionary returned by
the view into HTML, and returns the result as the response. This view is configured to invoke a renderer
which uses a Chameleon ZPT template (mypackage:templates/my_template.pt, as specified
in the __init__.py file call to add_view).

See Writing View Callables Which Use a Renderer for more information about how views, renderers, and
templates relate and cooperate.

Because our development.ini has a pyramid.reload_templates = true direc-
tive indicating that templates should be reloaded when they change, you won’t need to restart the
application server to see changes you make to templates. During development, this is handy. If this
directive had been false (or if the directive did not exist), you would need to restart the appli-
cation server for each template change. For production applications, you should set your project’s
pyramid.reload_templates to false to increase the speed at which templates may be ren-
dered.

54

5.9. THE MYPROJECT PACKAGE

5.9.3 resources.py

The resources.py module provides the resource data and behavior for our application. Resources are
objects which exist to provide site structure in applications which use traversal to map URLs to code. We
write a class named Root that provides the behavior for the root resource.

1 class Root(object):
2 def __init__(self, request):
3 self.request = request

1. Lines 1-3 define the Root class. The Root class is a “root resource factory” function that will be
called by the Pyramid Router for each request when it wants to find the root of the resource tree.

In a “real” application, the Root object would likely not be such a simple object. Instead, it might be
an object that could access some persistent data store, such as a database. Pyramid doesn’t make any
assumption about which sort of data storage you’ll want to use, so the sample application uses an instance
of myproject.resources.Root to represent the root.

5.9.4 static

This directory contains static assets which support the mytemplate.pt template. It includes CSS and
images.

5.9.5 templates/mytemplate.pt

The single Chameleon template that exists in the project. Its contents are too long to show here, but it
displays a default page when rendered. It is referenced by the call to add_view as the renderer
attribute in the __init__ file. See Writing View Callables Which Use a Renderer for more information
about renderers.

Templates are accessed and used by view configurations and sometimes by view functions themselves.
See Using Templates Directly and Templates Used as Renderers via Configuration.

5.9.6 tests.py

The tests.py module includes unit tests for your application.

55

5. CREATING A PYRAMID PROJECT

1 import unittest
2

3 from pyramid import testing
4

5 class ViewTests(unittest.TestCase):
6 def setUp(self):
7 self.config = testing.setUp()
8

9 def tearDown(self):
10 testing.tearDown()
11

12 def test_my_view(self):
13 from myproject.views import my_view
14 request = testing.DummyRequest()
15 info = my_view(request)
16 self.assertEqual(info[’project’], ’MyProject’)

This sample tests.py file has a single unit test defined within it. This test is executed when you run
python setup.py test. You may add more tests here as you build your application. You are not
required to write tests to use Pyramid, this file is simply provided as convenience and example.

See Unit, Integration, and Functional Testing for more information about writing Pyramid unit tests.

5.10 Modifying Package Structure

It is best practice for your application’s code layout to not stray too much from accepted Pyramid scaffold
defaults. If you refrain from changing things very much, other Pyramid coders will be able to more
quickly understand your application. However, the code layout choices made for you by a scaffold are in
no way magical or required. Despite the choices made for you by any scaffold, you can decide to lay your
code out any way you see fit.

For example, the configuration method named add_view() requires you to pass a dotted Python
name or a direct object reference as the class or function to be used as a view. By default, the
pyramid_starter scaffold would have you add view functions to the views.py module in your
package. However, you might be more comfortable creating a views directory, and adding a single file
for each view.

If your project package name was myproject and you wanted to arrange all your views in a Python
subpackage within the myproject package named views instead of within a single views.py file,
you might:

56

5.11. USING THE INTERACTIVE SHELL

• Create a views directory inside your mypackage package directory (the same directory which
holds views.py).

• Move the existing views.py file to a file inside the new views directory named, say, blog.py.

• Create a file within the new views directory named __init__.py (it can be empty, this just
tells Python that the views directory is a package.

Then change the __init__.py of your myproject project (not the __init__.py you just created in the
views directory, the one in its parent directory). For example, from something like:

1 config.add_view(’myproject.views.my_view’,
2 renderer=’myproject:templates/mytemplate.pt’)

To this:

1 config.add_view(’myproject.views.blog.my_view’,
2 renderer=’myproject:templates/mytemplate.pt’)

You can then continue to add files to the views directory, and refer to view classes or functions within
those files via the dotted name passed as the first argument to add_view. For example, if you added a file
named anothermodule.py to the views subdirectory, and added a view callable named my_view
to it:

1 config.add_view(’myproject.views.anothermodule.my_view’,
2 renderer=’myproject:templates/anothertemplate.pt’)

This pattern can be used to rearrage code referred to by any Pyramid API argument which accepts a dotted
Python name or direct object reference.

5.11 Using the Interactive Shell

It is possible to use a Python interpreter prompt loaded with a similar configuration as would be loaded if
you were running your Pyramid application via paster serve. This can be a useful debugging tool.
See The Interactive Shell for more details.

57

5. CREATING A PYRAMID PROJECT

5.12 Using an Alternate WSGI Server

The code generated by a Pyramid scaffold assumes that you will be using the paster serve command
to start your application while you do development. However, paster serve is by no means the only
way to start up and serve a Pyramid application. As we saw in Creating Your First Pyramid Application,
paster serve needn’t be invoked at all to run a Pyramid application. The use of paster serve to
run a Pyramid application is purely conventional based on the output of its scaffold.

Any WSGI server is capable of running a Pyramid application. Some WSGI servers don’t require the
PasteDeploy framework’s paster serve command to do server process management at all. Each
WSGI server has its own documentation about how it creates a process to run an application, and there
are many of them, so we cannot provide the details for each here. But the concepts are largely the same,
whatever server you happen to use.

One popular production alternative to a paster-invoked server is mod_wsgi. You can also use mod_wsgi
to serve your Pyramid application using the Apache web server rather than any “pure-Python” server that
is started as a result of paster serve. See Running a Pyramid Application under mod_wsgi for details.
However, it is usually easier to develop an application using a paster serve -invoked webserver, as
exception and debugging output will be sent to the console.

58

CHAPTER

SIX

URL DISPATCH

URL dispatch provides a simple way to map URLs to view code using a simple pattern matching language.
An ordered set of patterns is checked one-by-one. If one of the patterns matches the path information
associated with a request, a particular view callable is invoked. A view callable is a specific bit of code,
defined in your application, that receives the request and returns a response object.

6.1 High-Level Operational Overview

If route configuration is present in an application, the Pyramid Router checks every incoming request
against an ordered set of URL matching patterns present in a route map.

If any route pattern matches the information in the request, Pyramid will invoke view lookup to find a
matching view.

If no route pattern in the route map matches the information in the request provided in your application,
Pyramid will fail over to using traversal to perform resource location and view lookup.

6.2 Route Configuration

Route configuration is the act of adding a new route to an application. A route has a name, which
acts as an identifier to be used for URL generation. The name also allows developers to asso-
ciate a view configuration with the route. A route also has a pattern, meant to match against the
PATH_INFO portion of a URL (the portion following the scheme and port, e.g. /foo/bar in the
URL http://localhost:8080/foo/bar). It also optionally has a factory and a set of route
predicate attributes.

59

6. URL DISPATCH

6.2.1 Configuring a Route to Match a View

The pyramid.config.Configurator.add_route() method adds a single route configuration
to the application registry. Here’s an example:

"config" below is presumed to be an instance of the
pyramid.config.Configurator class; "myview" is assumed
to be a "view callable" function
from views import myview
config.add_route(’myroute’, ’/prefix/{one}/{two}’)
config.add_view(myview, route_name=’myroute’)

When a view callable added to the configuration by way of add_view() bcomes associated with a route
via its route_name predicate, that view callable will always be found and invoked when the associated
route pattern matches during a request.

More commonly, you will not use any add_view statements in your project’s “setup” code, instead only
using add_route statements using a scan for to associate view callables with routes. For example, if
this is a portion of your project’s __init__.py:

in your project’s __init__.py (mypackage.__init__)

config.add_route(’myroute’, ’/prefix/{one}/{two}’)
config.scan(’mypackage’)

Note that we don’t call add_view() in this setup code. However, the above scan execution
config.scan(’mypackage’) will pick up all configuration decoration, including any objects dec-
orated with the pyramid.view.view_config decorator in the mypackage Python pakage. For
example, if you have a views.py in your package, a scan will pick up any of its configuration decora-
tors, so we can add one there that that references myroute as a route_name parameter:

in your project’s views.py module (mypackage.views)

from pyramid.view import view_config
from pyramid.response import Response

@view_config(route_name=’myroute’)
def myview(request):

return Response(’OK’)

THe above combination of add_route and scan is completely equivalent to using the previous com-
bination of add_route and add_view.

60

6.2. ROUTE CONFIGURATION

6.2.2 Route Pattern Syntax

The syntax of the pattern matching language used by Pyramid URL dispatch in the pattern argument is
straightforward; it is close to that of the Routes system used by Pylons.

The pattern used in route configuration may start with a slash character. If the pattern does not start with
a slash character, an implicit slash will be prepended to it at matching time. For example, the following
patterns are equivalent:

{foo}/bar/baz

and:

/{foo}/bar/baz

A pattern segment (an individual item between / characters in the pattern) may either be a literal string
(e.g. foo) or it may be a replacement marker (e.g. {foo}) or a certain combination of both. A replace-
ment marker does not need to be preceded by a / character.

A replacement marker is in the format {name}, where this means “accept any characters up to the next
slash character and use this as the name matchdict value.”

A replacement marker in a pattern must begin with an uppercase or lowercase ASCII letter or an under-
score, and can be composed only of uppercase or lowercase ASCII letters, underscores, and numbers. For
example: a, a_b, _b, and b9 are all valid replacement marker names, but 0a is not.

A replacement marker could not start with an underscore until Pyramid 1.2. Previous versions
required that the replacement marker start with an uppercase or lowercase letter.

A matchdict is the dictionary representing the dynamic parts extracted from a URL based on the routing
pattern. It is available as request.matchdict. For example, the following pattern defines one literal
segment (foo) and two replacement markers (baz, and bar):

foo/{baz}/{bar}

The above pattern will match these URLs, generating the following matchdicts:

61

6. URL DISPATCH

foo/1/2 -> {’baz’:u’1’, ’bar’:u’2’}
foo/abc/def -> {’baz’:u’abc’, ’bar’:u’def’}

It will not match the following patterns however:

foo/1/2/ -> No match (trailing slash)
bar/abc/def -> First segment literal mismatch

The match for a segment replacement marker in a segment will be done only up to the first non-
alphanumeric character in the segment in the pattern. So, for instance, if this route pattern was used:

foo/{name}.html

The literal path /foo/biz.html will match the above route pattern, and the match result will be
{’name’:u’biz’}. However, the literal path /foo/biz will not match, because it does not contain
a literal .html at the end of the segment represented by {name}.html (it only contains biz, not
biz.html).

To capture both segments, two replacement markers can be used:

foo/{name}.{ext}

The literal path /foo/biz.html will match the above route pattern, and the match result will be
{’name’: ’biz’, ’ext’: ’html’}. This occurs because there is a literal part of . (period)
between the two replacement markers {name} and {ext}.

Replacement markers can optionally specify a regular expression which will be used to decide whether a
path segment should match the marker. To specify that a replacement marker should match only a specific
set of characters as defined by a regular expression, you must use a slightly extended form of replacement
marker syntax. Within braces, the replacement marker name must be followed by a colon, then directly
thereafter, the regular expression. The default regular expression associated with a replacement marker
[^/]+ matches one or more characters which are not a slash. For example, under the hood, the replace-
ment marker {foo} can more verbosely be spelled as {foo:[^/]+}. You can change this to be an
arbitrary regular expression to match an arbitrary sequence of characters, such as {foo:\d+} to match
only digits.

It is possible to use two replacement markers without any literal characters between them, for instance
/{foo}{bar}. However, this would be a nonsensical pattern without specifying a custom regular
expression to restrict what each marker captures.

Segments must contain at least one character in order to match a segment replacement marker. For
example, for the URL /abc/:

62

6.2. ROUTE CONFIGURATION

• /abc/{foo} will not match.

• /{foo}/ will match.

Note that values representing matched path segments will be url-unquoted and decoded from UTF-8 into
Unicode within the matchdict. So for instance, the following pattern:

foo/{bar}

When matching the following URL:

foo/La%20Pe%C3%B1a

The matchdict will look like so (the value is URL-decoded / UTF-8 decoded):

{’bar’:u’La Pe\xf1a’}

If the pattern has a * in it, the name which follows it is considered a “remainder match”. A remainder
match must come at the end of the pattern. Unlike segment replacement markers, it does not need to be
preceded by a slash. For example:

foo/{baz}/{bar}*fizzle

The above pattern will match these URLs, generating the following matchdicts:

foo/1/2/ ->
{’baz’:u’1’, ’bar’:u’2’, ’fizzle’:()}

foo/abc/def/a/b/c ->
{’baz’:u’abc’, ’bar’:u’def’, ’fizzle’:(u’a’, u’b’, u’c’)}

Note that when a *stararg remainder match is matched, the value put into the matchdict is turned into
a tuple of path segments representing the remainder of the path. These path segments are url-unquoted
and decoded from UTF-8 into Unicode. For example, for the following pattern:

foo/*fizzle

When matching the following path:

63

6. URL DISPATCH

/foo/La%20Pe%C3%B1a/a/b/c

Will generate the following matchdict:

{’fizzle’:(u’La Pe\xf1a’, u’a’, u’b’, u’c’)}

By default, the *stararg will parse the remainder sections into a tuple split by segment. Changing the
regular expression used to match a marker can also capture the remainder of the URL, for example:

foo/{baz}/{bar}{fizzle:.*}

The above pattern will match these URLs, generating the following matchdicts:

foo/1/2/ -> {’baz’:u’1’, ’bar’:u’2’, ’fizzle’:()}
foo/abc/def/a/b/c -> {’baz’:u’abc’, ’bar’:u’def’, ’fizzle’: u’a/b/c’)}

This occurs because the default regular expression for a marker is [^/]+ which will match everything
up to the first /, while {fizzle:.*} will result in a regular expression match of .* capturing the
remainder into a single value.

6.2.3 Route Declaration Ordering

Route configuration declarations are evaluated in a specific order when a request enters the system. As a
result, the order of route configuration declarations is very important. The order that routes declarations
are evaluated is the order in which they are added to the application at startup time. (This is unlike a
different way of mapping URLs to code that Pyramid provides, named traversal, which does not depend
on pattern ordering).

For routes added via the add_route method, the order that routes are evaluated is the order in which
they are added to the configuration imperatively.

For example, route configuration statements with the following patterns might be added in the following
order:

members/{def}
members/abc

In such a configuration, the members/abc pattern would never be matched. This is because the match
ordering will always match members/{def} first; the route configuration with members/abc will
never be evaluated.

64

6.3. ROUTE MATCHING

6.2.4 Route Configuration Arguments

Route configuration add_route statements may specify a large number of arguments. They are docu-
mented as part of the API documentation at pyramid.config.Configurator.add_route().

Many of these arguments are route predicate arguments. A route predicate argument specifies that some
aspect of the request must be true for the associated route to be considered a match during the route
matching process. Examples of route predicate arguments are pattern, xhr, and request_method.

Other arguments are name and factory. These arguments represent neither predicates nor view con-
figuration information.

Some arguments are view-configuration related arguments, such as view_renderer. These
only have an effect when the route configuration names a view and these arguments have been dep-
recated as of Pyramid 1.1.

6.3 Route Matching

The main purpose of route configuration is to match (or not match) the PATH_INFO present in the WSGI
environment provided during a request against a URL path pattern. PATH_INFO represents the path
portion of the URL that was requested.

The way that Pyramid does this is very simple. When a request enters the system, for each
route configuration declaration present in the system, Pyramid checks the request’s PATH_INFO
against the pattern declared. This checking happens in the order that the routes were declared via
pyramid.config.Configurator.add_route().

When a route configuration is declared, it may contain route predicate arguments. All route predicates
associated with a route declaration must be True for the route configuration to be used for a given request
during a check. If any predicate in the set of route predicate arguments provided to a route configuration
returns False during a check, that route is skipped and route matching continues through the ordered set
of routes.

If any route matches, the route matching process stops and the view lookup subsystem takes over to find
the most reasonable view callable for the matched route. Most often, there’s only one view that will
match (a view configured with a route_name argument matching the matched route). To gain a better
understanding of how routes and views are associated in a real application, you can use the paster
pviews command, as documented in Displaying Matching Views for a Given URL.

If no route matches after all route patterns are exhausted, Pyramid falls back to traversal to do resource
location and view lookup.

65

6. URL DISPATCH

6.3.1 The Matchdict

When the URL pattern associated with a particular route configuration is matched by a request, a dictio-
nary named matchdict is added as an attribute of the request object. Thus, request.matchdict
will contain the values that match replacement patterns in the pattern element. The keys in a matchdict
will be strings. The values will be Unicode objects.

If no route URL pattern matches, the matchdict object attached to the request will be None.

6.3.2 The Matched Route

When the URL pattern associated with a particular route configuration is matched by a re-
quest, an object named matched_route is added as an attribute of the request object. Thus,
request.matched_route will be an object implementing the IRoute interface which matched
the request. The most useful attribute of the route object is name, which is the name of the route that
matched.

If no route URL pattern matches, the matched_route object attached to the request will be
None.

6.4 Routing Examples

Let’s check out some examples of how route configuration statements might be commonly declared, and
what will happen if they are matched by the information present in a request.

6.4.1 Example 1

The simplest route declaration which configures a route match to directly result in a particular view
callable being invoked:

1 config.add_route(’idea’, ’site/{id}’)
2 config.add_view(’mypackage.views.site_view’, route_name=’idea’)

66

6.4. ROUTING EXAMPLES

When a route configuration with a view attribute is added to the system, and an incoming request matches
the pattern of the route configuration, the view callable named as the view attribute of the route config-
uration will be invoked.

In the case of the above example, when the URL of a request matches /site/{id}, the view callable
at the Python dotted path name mypackage.views.site_view will be called with the request. In
other words, we’ve associated a view callable directly with a route pattern.

When the /site/{id} route pattern matches during a request, the site_view view callable is in-
voked with that request as its sole argument. When this route matches, a matchdict will be generated
and attached to the request as request.matchdict. If the specific URL matched is /site/1,
the matchdict will be a dictionary with a single key, id; the value will be the string ’1’, ex.:
{’id’:’1’}.

The mypackage.views module referred to above might look like so:

1 from pyramid.response import Response
2

3 def site_view(request):
4 return Response(request.matchdict[’id’])

The view has access to the matchdict directly via the request, and can access variables within it that match
keys present as a result of the route pattern.

See Views, and View Configuration for more information about views.

6.4.2 Example 2

Below is an example of a more complicated set of route statements you might add to your application:

1 config.add_route(’idea’, ’ideas/{idea}’)
2 config.add_route(’user’, ’users/{user}’)
3 config.add_route(’tag’, ’tags/{tags}’)
4

5 config.add_view(’mypackage.views.idea_view’, route_name=’idea’)
6 config.add_view(’mypackage.views.user_view’, route_name=’user’)
7 config.add_view(’mypackage.views.tag_view’, route_name=’tag’)

The above configuration will allow Pyramid to service URLs in these forms:

67

6. URL DISPATCH

/ideas/{idea}
/users/{user}
/tags/{tag}

• When a URL matches the pattern /ideas/{idea}, the view callable available at the dot-
ted Python pathname mypackage.views.idea_view will be called. For the specific
URL /ideas/1, the matchdict generated and attached to the request will consist of
{’idea’:’1’}.

• When a URL matches the pattern /users/{user}, the view callable available at the dot-
ted Python pathname mypackage.views.user_view will be called. For the specific
URL /users/1, the matchdict generated and attached to the request will consist of
{’user’:’1’}.

• When a URL matches the pattern /tags/{tag}, the view callable available at the dotted Python
pathname mypackage.views.tag_view will be called. For the specific URL /tags/1, the
matchdict generated and attached to the request will consist of {’tag’:’1’}.

In this example we’ve again associated each of our routes with a view callable directly. In all cases,
the request, which will have a matchdict attribute detailing the information found in the URL by the
process will be passed to the view callable.

6.4.3 Example 3

The context resource object passed in to a view found as the result of URL dispatch will, by default, be
an instance of the object returned by the root factory configured at startup time (the root_factory
argument to the Configurator used to configure the application).

You can override this behavior by passing in a factory argument to the add_route() method for a
particular route. The factory should be a callable that accepts a request and returns an instance of a
class that will be the context resource used by the view.

An example of using a route with a factory:

1 config.add_route(’idea’, ’ideas/{idea}’, factory=’myproject.resources.Idea’)
2 config.add_view(’myproject.views.idea_view’, route_name=’idea’)

The above route will manufacture an Idea resource as a context, assuming that
mypackage.resources.Idea resolves to a class that accepts a request in its __init__.
For example:

68

6.5. MATCHING THE ROOT URL

1 class Idea(object):
2 def __init__(self, request):
3 pass

In a more complicated application, this root factory might be a class representing a SQLAlchemy model.

See Route Factories for more details about how to use route factories.

6.5 Matching the Root URL

It’s not entirely obvious how to use a route pattern to match the root URL (“/”). To do so, give the empty
string as a pattern in a call to add_route():

1 config.add_route(’root’, ’’)

Or provide the literal string / as the pattern:

1 config.add_route(’root’, ’/’)

6.6 Generating Route URLs

Use the pyramid.request.Request.route_url() method to generate URLs based on route
patterns. For example, if you’ve configured a route with the name “foo” and the pattern
“{a}/{b}/{c}”, you might do this.

1 url = request.route_url(’foo’, a=’1’, b=’2’, c=’3’)

This would return something like the string http://example.com/1/2/3 (at least if the current
protocol and hostname implied http://example.com). See the route_url() API documentation
for more information.

6.7 Static Routes

Routes may be added with a static keyword argument. For example:

69

6. URL DISPATCH

1 config = Configurator()
2 config.add_route(’page’, ’/page/{action}’, static=True)

Routes added with a True static keyword argument will never be considered for matching at request
time. Static routes are useful for URL generation purposes only. As a result, it is usually nonsensical to
provide other non-name and non-pattern arguments to add_route() when static is passed as
True, as none of the other arguments will ever be employed. A single exception to this rule is use of the
pregenerator argument, which is not ignored when static is True.

the static argument to add_route() is new as of Pyramid 1.1.

6.8 Redirecting to Slash-Appended Routes

For behavior like Django’s APPEND_SLASH=True, use the append_slash_notfound_view()
view as the Not Found view in your application. Defining this view as the Not Found view is a way to
automatically redirect requests where the URL lacks a trailing slash, but requires one to match the proper
route. When configured, along with at least one other route in your application, this view will be invoked
if the value of PATH_INFO does not already end in a slash, and if the value of PATH_INFO plus a slash
matches any route’s pattern. In this case it does an HTTP redirect to the slash-appended PATH_INFO.

Let’s use an example, because this behavior is a bit magical. If the append_slash_notfound_view
is configured in your application and your route configuration looks like so:

1 config.add_route(’noslash’, ’no_slash’)
2 config.add_route(’hasslash’, ’has_slash/’)
3

4 config.add_view(’myproject.views.no_slash’, route_name=’noslash’)
5 config.add_view(’myproject.views.has_slash’, route_name=’hasslash’)

If a request enters the application with the PATH_INFO value of /has_slash/, the second route will
match. If a request enters the application with the PATH_INFO value of /has_slash, a route will be
found by the slash-appending not found view. An HTTP redirect to /has_slash/ will be returned to
the user’s browser.

If a request enters the application with the PATH_INFO value of /no_slash, the first route will match.
However, if a request enters the application with the PATH_INFO value of /no_slash/, no route will
match, and the slash-appending not found view will not find a matching route with an appended slash.

70

6.8. REDIRECTING TO SLASH-APPENDED ROUTES

You should not rely on this mechanism to redirect POST requests. The redirect of the slash-
appending not found view will turn a POST request into a GET, losing any POST data in the original
request.

To configure the slash-appending not found view in your application, change the application’s startup
configuration, adding the following stanza:

1 config.add_view(’pyramid.view.append_slash_notfound_view’,
2 context=’pyramid.httpexceptions.HTTPNotFound’)

See pyramid.view and Changing the Not Found View for more information about the slash-appending not
found view and for a more general description of how to configure a not found view.

6.8.1 Custom Not Found View With Slash Appended Routes

There can only be one Not Found view in any Pyramid application. Even if you use
append_slash_notfound_view() as the Not Found view, Pyramid still must generate a 404
Not Found response when it cannot redirect to a slash-appended URL; this not found response will
be visible to site users.

If you don’t care what this 404 response looks like, and only you need redirections to slash-
appended route URLs, you may use the append_slash_notfound_view() object as the Not
Found view as described above. However, if you wish to use a custom notfound view callable
when a URL cannot be redirected to a slash-appended URL, you may wish to use an instance of the
AppendSlashNotFoundViewFactory class as the Not Found view, supplying a view callable to
be used as the custom notfound view as the first argument to its constructor. For instance:

1 from pyramid.httpexceptions import HTTPNotFound
2 from pyramid.view import AppendSlashNotFoundViewFactory
3

4 def notfound_view(context, request):
5 return HTTPNotFound(’It aint there, stop trying!’)
6

7 custom_append_slash = AppendSlashNotFoundViewFactory(notfound_view)
8 config.add_view(custom_append_slash, context=HTTPNotFound)

The notfound_view supplied must adhere to the two-argument view callable calling convention of
(context, request) (context will be the exception object).

71

6. URL DISPATCH

6.9 Debugging Route Matching

It’s useful to be able to take a peek under the hood when requests that enter your applica-
tion arent matching your routes as you expect them to. To debug route matching, use the
PYRAMID_DEBUG_ROUTEMATCH environment variable or the pyramid.debug_routematch
configuration file setting (set either to true). Details of the route matching decision for a particular
request to the Pyramid application will be printed to the stderr of the console which you started the
application from. For example:

1 [chrism@thinko pylonsbasic]$ PYRAMID_DEBUG_ROUTEMATCH=true \
2 bin/paster serve development.ini
3 Starting server in PID 13586.
4 serving on 0.0.0.0:6543 view at http://127.0.0.1:6543
5 2010-12-16 14:45:19,956 no route matched for url \
6 http://localhost:6543/wontmatch
7 2010-12-16 14:45:20,010 no route matched for url \
8 http://localhost:6543/favicon.ico
9 2010-12-16 14:41:52,084 route matched for url \

10 http://localhost:6543/static/logo.png; \
11 route_name: ’static/’,

See Environment Variables and .ini File Settings for more information about how, and where to set these
values.

You can also use the paster proutes command to see a display of all the routes configured in your
application; for more information, see Displaying All Application Routes.

6.10 Using a Route Prefix to Compose Applications

This feature is new as of Pyramid 1.2.

The pyramid.config.Configurator.include() method allows configuration statements to
be included from separate files. See Rules for Building An Extensible Application for information about
this method. Using pyramid.config.Configurator.include() allows you to build your ap-
plication from small and potentially reusable components.

The pyramid.config.Configurator.include() method accepts an argument named
route_prefix which can be useful to authors of URL-dispatch-based applications. If

72

6.10. USING A ROUTE PREFIX TO COMPOSE APPLICATIONS

route_prefix is supplied to the include method, it must be a string. This string represents a route
prefix that will be prepended to all route patterns added by the included configuration. Any calls to
pyramid.config.Configurator.add_route() within the included callable will have their
pattern prefixed with the value of route_prefix. This can be used to help mount a set of routes
at a different location than the included callable’s author intended while still maintaining the same route
names. For example:

1 from pyramid.config import Configurator
2

3 def users_include(config):
4 config.add_route(’show_users’, ’/show’)
5

6 def main(global_config, **settings):
7 config = Configurator()
8 config.include(users_include, route_prefix=’/users’)

In the above configuration, the show_users route will have an effective route pattern of
/users/show, instead of /show because the route_prefix argument will be prepended
to the pattern. The route will then only match if the URL path is /users/show, and
when the pyramid.request.Request.route_url() function is called with the route name
show_users, it will generate a URL with that same path.

Route prefixes are recursive, so if a callable executed via an include itself turns around and includes
another callable, the second-level route prefix will be prepended with the first:

from pyramid.config import Configurator

def timing_include(config):
config.add_route(’show_times’, /times’)

def users_include(config):
config.add_route(’show_users’, ’/show’)
config.include(timing_include, route_prefix=’/timing’)

def main(global_config, **settings):
config = Configurator()
config.include(users_include, route_prefix=’/users’)

In the above configuration, the show_users route will still have an effective route pat-
tern of /users/show. The show_times route however, will have an effective pattern of
/users/timing/show_times.

Route prefixes have no impact on the requirement that the set of route names in any given Pyramid
configuration must be entirely unique. If you compose your URL dispatch application out of many small

73

6. URL DISPATCH

subapplications using pyramid.config.Configurator.include(), it’s wise to use a dotted
name for your route names, so they’ll be unlikely to conflict with other packages that may be added in the
future. For example:

from pyramid.config import Configurator

def timing_include(config):
config.add_route(’timing.show_times’, /times’)

def users_include(config):
config.add_route(’users.show_users’, ’/show’)
config.include(timing_include, route_prefix=’/timing’)

def main(global_config, **settings):
config = Configurator()
config.include(users_include, route_prefix=’/users’)

6.11 Custom Route Predicates

Each of the predicate callables fed to the custom_predicates argument of add_route() must
be a callable accepting two arguments. The first argument passed to a custom predicate is a dictionary
conventionally named info. The second argument is the current request object.

The info dictionary has a number of contained values: match is a dictionary: it represents the argu-
ments matched in the URL by the route. route is an object representing the route which was matched
(see pyramid.interfaces.IRoute for the API of such a route object).

info[’match’] is useful when predicates need access to the route match. For example:

1 def any_of(segment_name, *allowed):
2 def predicate(info, request):
3 if info[’match’][segment_name] in allowed:
4 return True
5 return predicate
6

7 num_one_two_or_three = any_of(’num’, ’one’, ’two’, ’three’)
8

9 config.add_route(’route_to_num’, ’/{num}’,
10 custom_predicates=(num_one_two_or_three,))

74

6.11. CUSTOM ROUTE PREDICATES

The above any_of function generates a predicate which ensures that the match value named
segment_name is in the set of allowable values represented by allowed. We use this any_of func-
tion to generate a predicate function named num_one_two_or_three, which ensures that the num
segment is one of the values one, two, or three , and use the result as a custom predicate by feeding it
inside a tuple to the custom_predicates argument to add_route().

A custom route predicate may also modify the match dictionary. For instance, a predicate might do some
type conversion of values:

1 def integers(*segment_names):
2 def predicate(info, request):
3 match = info[’match’]
4 for segment_name in segment_names:
5 try:
6 match[segment_name] = int(match[segment_name])
7 except (TypeError, ValueError):
8 pass
9 return True

10 return predicate
11

12 ymd_to_int = integers(’year’, ’month’, ’day’)
13

14 config.add_route(’ymd’, ’/{year}/{month}/{day}’,
15 custom_predicates=(ymd_to_int,))

Note that a conversion predicate is still a predicate so it must return True or False; a predicate that
does only conversion, such as the one we demonstrate above should unconditionally return True.

To avoid the try/except uncertainty, the route pattern can contain regular expressions specifying require-
ments for that marker. For instance:

1 def integers(*segment_names):
2 def predicate(info, request):
3 match = info[’match’]
4 for segment_name in segment_names:
5 match[segment_name] = int(match[segment_name])
6 return True
7 return predicate
8

9 ymd_to_int = integers(’year’, ’month’, ’day’)
10

11 config.add_route(’ymd’, ’/{year:\d+}/{month:\d+}/{day:\d+}’,
12 custom_predicates=(ymd_to_int,))

75

6. URL DISPATCH

Now the try/except is no longer needed because the route will not match at all unless these markers match
\d+ which requires them to be valid digits for an int type conversion.

The match dictionary passed within info to each predicate attached to a route will be the same dictio-
nary. Therefore, when registering a custom predicate which modifies the match dict, the code registering
the predicate should usually arrange for the predicate to be the last custom predicate in the custom predi-
cate list. Otherwise, custom predicates which fire subsequent to the predicate which performs the match
modification will receive the modified match dictionary.

It is a poor idea to rely on ordering of custom predicates to build a conversion pipeline, where one
predicate depends on the side effect of another. For instance, it’s a poor idea to register two custom
predicates, one which handles conversion of a value to an int, the next which handles conversion of
that integer to some custom object. Just do all that in a single custom predicate.

The route object in the info dict is an object that has two useful attributes: name and pattern. The
name attribute is the route name. The pattern attribute is the route pattern. An example of using the
route in a set of route predicates:

1 def twenty_ten(info, request):
2 if info[’route’].name in (’ymd’, ’ym’, ’y’):
3 return info[’match’][’year’] == ’2010’
4

5 config.add_route(’y’, ’/{year}’, custom_predicates=(twenty_ten,))
6 config.add_route(’ym’, ’/{year}/{month}’, custom_predicates=(twenty_ten,))
7 config.add_route(’ymd’, ’/{year}/{month}/{day}’,
8 custom_predicates=(twenty_ten,))

The above predicate, when added to a number of route configurations ensures that the year match argu-
ment is ‘2010’ if and only if the route name is ‘ymd’, ‘ym’, or ‘y’.

See also pyramid.interfaces.IRoute for more API documentation about route objects.

6.12 Route Factories

Although it is not a particular common need in basic applications, a “route” configuration declaration can
mention a “factory”. When that route matches a request, and a factory is attached to a route, the root
factory passed at startup time to the Configurator is ignored; instead the factory associated with the route
is used to generate a root object. This object will usually be used as the context resource of the view
callable ultimately found via view lookup.

76

6.13. USING PYRAMID SECURITY WITH URL DISPATCH

1 config.add_route(’abc’, ’/abc’,
2 factory=’myproject.resources.root_factory’)
3 config.add_view(’myproject.views.theview’, route_name=’abc’)

The factory can either be a Python object or a dotted Python name (a string) which points to such a Python
object, as it is above.

In this way, each route can use a different factory, making it possible to supply a different context resource
object to the view related to each particular route.

A factory must be a callable which accepts a request and returns an arbitrary Python object. For example,
the below class can be used as a factory:

1 class Mine(object):
2 def __init__(self, request):
3 pass

A route factory is actually conceptually identical to the root factory described at The Resource Tree.

Supplying a different resource factory for each route is useful when you’re trying to use a Pyramid au-
thorization policy to provide declarative, “context sensitive” security checks; each resource can maintain
a separate ACL, as documented in Using Pyramid Security With URL Dispatch. It is also useful when
you wish to combine URL dispatch with traversal as documented within Combining Traversal and URL
Dispatch.

6.13 Using Pyramid Security With URL Dispatch

Pyramid provides its own security framework which consults an authorization policy before allowing any
application code to be called. This framework operates in terms of an access control list, which is stored
as an __acl__ attribute of a resource object. A common thing to want to do is to attach an __acl__ to
the resource object dynamically for declarative security purposes. You can use the factory argument
that points at a factory which attaches a custom __acl__ to an object at its creation time.

Such a factory might look like so:

1 class Article(object):
2 def __init__(self, request):
3 matchdict = request.matchdict
4 article = matchdict.get(’article’, None)
5 if article == ’1’:
6 self.__acl__ = [(Allow, ’editor’, ’view’)]

77

6. URL DISPATCH

If the route archives/{article} is matched, and the article number is 1, Pyramid will generate an
Article context resource with an ACL on it that allows the editor principal the view permission.
Obviously you can do more generic things than inspect the routes match dict to see if the article
argument matches a particular string; our sample Article factory class is not very ambitious.

See Security for more information about Pyramid security and ACLs.

6.14 Route View Callable Registration and Lookup Details

When a request enters the system which matches the pattern of the route, the usual result is simple: the
view callable associated with the route is invoked with the request that caused the invocation.

For most usage, you needn’t understand more than this; how it works is an implementation detail. In the
interest of completeness, however, we’ll explain how it does work in the this section. You can skip it if
you’re uninterested.

When a view is associated with a route configuration, Pyramid ensures that a view configuration is regis-
tered that will always be found when the route pattern is matched during a request. To do so:

• A special route-specific interface is created at startup time for each route configuration declaration.

• When an add_view statement mentions a route name attribute, a view configuration is regis-
tered at startup time. This view configuration uses a route-specific interface as a request type.

• At runtime, when a request causes any route to match, the request object is decorated with the
route-specific interface.

• The fact that the request is decorated with a route-specific interface causes the view lookup ma-
chinery to always use the view callable registered using that interface by the route configuration to
service requests that match the route pattern.

As we can see from the above description, technically, URL dispatch doesn’t actually map a URL pattern
directly to a view callable. Instead, URL dispatch is a resource location mechanism. A Pyramid resource
location subsystem (i.e., URL dispatch or traversal) finds a resource object that is the context of a request.
Once the context is determined, a separate subsystem named view lookup is then responsible for finding
and invoking a view callable based on information available in the context and the request. When URL
dispatch is used, the resource location and view lookup subsystems provided by Pyramid are still being
utilized, but in a way which does not require a developer to understand either of them in detail.

If no route is matched using URL dispatch, Pyramid falls back to traversal to handle the request.

78

6.15. REFERENCES

6.15 References

A tutorial showing how URL dispatch can be used to create a Pyramid application exists in SQLAlchemy
+ URL Dispatch Wiki Tutorial.

79

6. URL DISPATCH

80

CHAPTER

SEVEN

VIEWS

One of the primary jobs of Pyramid is to find and invoke a view callable when a request reaches your
application. View callables are bits of code which do something interesting in response to a request made
to your application. They are the “meat” of any interesting web application.

A Pyramid view callable is often referred to in conversational shorthand as a view. In this
documentation, however, we need to use less ambiguous terminology because there are significant
differences between view configuration, the code that implements a view callable, and the process of
view lookup.

This chapter describes how view callables should be defined. We’ll have to wait until a following chap-
ter (entitled View Configuration) to find out how we actually tell Pyramid to wire up view callables to
particular URL patterns and other request circumstances.

7.1 View Callables

View callables are, at the risk of sounding obvious, callable Python objects. Specifically, view callables
can be functions, classes, or instances that implement an __call__ method (making the instance
callable).

View callables must, at a minimum, accept a single argument named request. This argument represents
a Pyramid Request object. A request object represents a WSGI environment provided to Pyramid by the
upstream WSGI server. As you might expect, the request object contains everything your application
needs to know about the specific HTTP request being made.

A view callable’s ultimate responsibility is to create a Pyramid Response object. This can be done by
creating a Response object in the view callable code and returning it directly or by raising special kinds
of exceptions from within the body of a view callable.

81

7. VIEWS

7.2 Defining a View Callable as a Function

One of the easiest way to define a view callable is to create a function that accepts a single argument
named request, and which returns a Response object. For example, this is a “hello world” view callable
implemented as a function:

1 from pyramid.response import Response
2

3 def hello_world(request):
4 return Response(’Hello world!’)

7.3 Defining a View Callable as a Class

A view callable may also be represented by a Python class instead of a function. When a view callable is
a class, the calling semantics are slightly different than when it is a function or another non-class callable.
When a view callable is a class, the class’ __init__ method is called with a request parameter. As
a result, an instance of the class is created. Subsequently, that instance’s __call__ method is invoked
with no parameters. Views defined as classes must have the following traits:

• an __init__ method that accepts a request argument.

• a __call__ (or other) method that accepts no parameters and which returns a response.

For example:

1 from pyramid.response import Response
2

3 class MyView(object):
4 def __init__(self, request):
5 self.request = request
6

7 def __call__(self):
8 return Response(’hello’)

The request object passed to __init__ is the same type of request object described in Defining a View
Callable as a Function.

If you’d like to use a different attribute than __call__ to represent the method expected to return a
response, you can use an attr value as part of the configuration for the view. See View Configuration
Parameters. The same view callable class can be used in different view configuration statements with
different attr values, each pointing at a different method of the class if you’d like the class to represent
a collection of related view callables.

82

7.4. VIEW CALLABLE RESPONSES

7.4 View Callable Responses

A view callable may return an object that implements the Pyramid Response interface. The
easiest way to return something that implements the Response interface is to return a
pyramid.response.Response object instance directly. For example:

1 from pyramid.response import Response
2

3 def view(request):
4 return Response(’OK’)

Pyramid provides a range of different “exception” classes which inherit from
pyramid.response.Response. For example, an instance of the class
pyramid.httpexceptions.HTTPFound is also a valid response object because it inherits
from Response. For examples, see HTTP Exceptions and Using a View Callable to Do an HTTP
Redirect.

You can also return objects from view callables that aren’t instances of
pyramid.response.Response in various circumstances. This can be helpful when writ-
ing tests and when attempting to share code between view callables. See Renderers for the common
way to allow for this. A much less common way to allow for view callables to return non-Response
objects is documented in Changing How Pyramid Treats View Responses.

7.5 Using Special Exceptions In View Callables

Usually when a Python exception is raised within a view callable, Pyramid allows the exception to prop-
agate all the way out to the WSGI server which invoked the application. It is usually caught and logged
there.

However, for convenience, a special set of exceptions exists. When one of these exceptions is raised
within a view callable, it will always cause Pyramid to generate a response. These are known as HTTP
exception objects.

83

7. VIEWS

7.5.1 HTTP Exceptions

All classes documented in the pyramid.httpexceptions module documented as inheriting from
the pryamid.httpexceptions.HTTPException are http exception objects. An instances of an
HTTP exception object may either be returned or raised from within view code. In either case (return or
raise) the instance will be used as as the view’s response.

For example, the pyramid.httpexceptions.HTTPUnauthorized exception can be raised. This
will cause a response to be generated with a 401 Unauthorized status:

1 from pyramid.httpexceptions import HTTPUnauthorized
2

3 def aview(request):
4 raise HTTPUnauthorized()

An HTTP exception, instead of being raised, can alternately be returned (HTTP exceptions are also valid
response objects):

1 from pyramid.httpexceptions import HTTPUnauthorized
2

3 def aview(request):
4 return HTTPUnauthorized()

A shortcut for creating an HTTP exception is the pyramid.httpexceptions.exception_response()
function. This function accepts an HTTP status code and returns the corresponding HTTP exception. For
example, instead of importing and constructing a HTTPUnauthorized response object, you can use
the exception_response() function to construct and return the same object.

1 from pyramid.httpexceptions import exception_response
2

3 def aview(request):
4 raise exception_response(401)

This is the case because 401 is the HTTP status code for “HTTP Unauthorized”. Therefore, raise
exception_response(401) is functionally equivalent to raise HTTPUnauthorized().
Documentation which maps each HTTP response code to its purpose and its associated HTTP excep-
tion object is provided within pyramid.httpexceptions.

The exception_response() function is new as of Pyramid 1.1.

84

7.6. CUSTOM EXCEPTION VIEWS

7.5.2 How Pyramid Uses HTTP Exceptions

HTTP exceptions are meant to be used directly by application application devel-
opers. However, Pyramid itself will raise two HTTP exceptions at various points
during normal operations: pyramid.httpexceptions.HTTPNotFound and
pyramid.httpexceptions.HTTPForbidden. Pyramid will raise the HTTPNotFound
exception are raised when it cannot find a view to service a request. Pyramid will raise the Forbidden
exception or when authorization was forbidden by a security policy.

If HTTPNotFound is raised by Pyramid itself or within view code, the result of the Not Found View will
be returned to the user agent which performed the request.

If HTTPForbidden is raised by Pyramid itself within view code, the result of the Forbidden View will
be returned to the user agent which performed the request.

7.6 Custom Exception Views

The machinery which allows HTTP exceptions to be raised and caught by specialized views as described
in Using Special Exceptions In View Callables can also be used by application developers to convert
arbitrary exceptions to responses.

To register a view that should be called whenever a particular exception is raised from with Pyramid view
code, use the exception class or one of its superclasses as the context of a view configuration which
points at a view callable you’d like to generate a response.

For example, given the following exception class in a module named helloworld.exceptions:

1 class ValidationFailure(Exception):
2 def __init__(self, msg):
3 self.msg = msg

You can wire a view callable to be called whenever any of your other code raises a
helloworld.exceptions.ValidationFailure exception:

1 from pyramid.view import view_config
2 from helloworld.exceptions import ValidationFailure
3

4 @view_config(context=ValidationFailure)
5 def failed_validation(exc, request):
6 response = Response(’Failed validation: %s’ % exc.msg)
7 response.status_int = 500
8 return response

85

7. VIEWS

Assuming that a scan was run to pick up this view registration, this view callable will be invoked whenever
a helloworld.exceptions.ValidationFailure is raised by your application’s view code.
The same exception raised by a custom root factory, a custom traverser, or a custom view or route predicate
is also caught and hooked.

Other normal view predicates can also be used in combination with an exception view registration:

1 from pyramid.view import view_config
2 from helloworld.exceptions import ValidationFailure
3

4 @view_config(context=ValidationFailure, route_name=’home’)
5 def failed_validation(exc, request):
6 response = Response(’Failed validation: %s’ % exc.msg)
7 response.status_int = 500
8 return response

The above exception view names the route_name of home, meaning that it will only be called when
the route matched has a name of home. You can therefore have more than one exception view for any
given exception in the system: the “most specific” one will be called when the set of request circumstances
match the view registration.

The only view predicate that cannot be used successfully when creating an exception view configuration
is name. The name used to look up an exception view is always the empty string. Views registered as
exception views which have a name will be ignored.

Normal (i.e., non-exception) views registered against a context resource type which inherits from
Exception will work normally. When an exception view configuration is processed, two views are
registered. One as a “normal” view, the other as an “exception” view. This means that you can use an
exception as context for a normal view.

Exception views can be configured with any view registration mechanism: @view_config decorator
or imperative add_view styles.

7.7 Using a View Callable to Do an HTTP Redirect

You can issue an HTTP redirect by using the pyramid.httpexceptions.HTTPFound class. Rais-
ing or returning an instance of this class will cause the client to receive a “302 Found” response.

To do so, you can return a pyramid.httpexceptions.HTTPFound instance.

86

7.8. HANDLING FORM SUBMISSIONS IN VIEW CALLABLES (UNICODE AND CHARACTER
SET ISSUES)

1 from pyramid.httpexceptions import HTTPFound
2

3 def myview(request):
4 return HTTPFound(location=’http://example.com’)

Alternately, you can raise an HTTPFound exception instead of returning one.

1 from pyramid.httpexceptions import HTTPFound
2

3 def myview(request):
4 raise HTTPFound(location=’http://example.com’)

When the instance is raised, it is caught by the default exception response handler and turned into a
response.

7.8 Handling Form Submissions in View Callables (Unicode
and Character Set Issues)

Most web applications need to accept form submissions from web browsers and various other clients.
In Pyramid, form submission handling logic is always part of a view. For a general overview of how to
handle form submission data using the WebOb API, see Request and Response Objects and “Query and
POST variables” within the WebOb documentation. Pyramid defers to WebOb for its request and re-
sponse implementations, and handling form submission data is a property of the request implementation.
Understanding WebOb’s request API is the key to understanding how to process form submission data.

There are some defaults that you need to be aware of when trying to handle form submission data in a
Pyramid view. Having high-order (i.e., non-ASCII) characters in data contained within form submissions
is exceedingly common, and the UTF-8 encoding is the most common encoding used on the web for
character data. Since Unicode values are much saner than working with and storing bytestrings, Pyramid
configures the WebOb request machinery to attempt to decode form submission values into Unicode from
UTF-8 implicitly. This implicit decoding happens when view code obtains form field values via the
request.params, request.GET, or request.POST APIs (see pyramid.request for details about
these APIs).

Many people find the difference between Unicode and UTF-8 confusing. Unicode is a standard
for representing text that supports most of the world’s writing systems. However, there are many ways
that Unicode data can be encoded into bytes for transit and storage. UTF-8 is a specific encoding for
Unicode, that is backwards-compatible with ASCII. This makes UTF-8 very convenient for encoding
data where a large subset of that data is ASCII characters, which is largely true on the web. UTF-8 is
also the standard character encoding for URLs.

87

http://docs.webob.org/en/latest/reference.html#query-post-variables
http://docs.webob.org/en/latest/reference.html#query-post-variables

7. VIEWS

As an example, let’s assume that the following form page is served up to a browser client, and its action
points at some Pyramid view code:

1 <html xmlns="http://www.w3.org/1999/xhtml">
2 <head>
3 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
4 </head>
5 <form method="POST" action="myview">
6 <div>
7 <input type="text" name="firstname"/>
8 </div>
9 <div>

10 <input type="text" name="lastname"/>
11 </div>
12 <input type="submit" value="Submit"/>
13 </form>
14 </html>

The myview view code in the Pyramid application must expect that the values returned by
request.params will be of type unicode, as opposed to type str. The following will work to
accept a form post from the above form:

1 def myview(request):
2 firstname = request.params[’firstname’]
3 lastname = request.params[’lastname’]

But the following myview view code may not work, as it tries to decode already-decoded (unicode)
values obtained from request.params:

1 def myview(request):
2 # the .decode(’utf-8’) will break below if there are any high-order
3 # characters in the firstname or lastname
4 firstname = request.params[’firstname’].decode(’utf-8’)
5 lastname = request.params[’lastname’].decode(’utf-8’)

For implicit decoding to work reliably, you should ensure that every form you render that posts to a
Pyramid view explicitly defines a charset encoding of UTF-8. This can be done via a response that
has a ;charset=UTF-8 in its Content-Type header; or, as in the form above, with a meta
http-equiv tag that implies that the charset is UTF-8 within the HTML head of the page containing
the form. This must be done explicitly because all known browser clients assume that they should encode
form data in the same character set implied by Content-Type value of the response containing the
form when subsequently submitting that form. There is no other generally accepted way to tell browser
clients which charset to use to encode form data. If you do not specify an encoding explicitly, the browser

88

7.9. ALTERNATE VIEW CALLABLE ARGUMENT/CALLING CONVENTIONS

client will choose to encode form data in its default character set before submitting it, which may not be
UTF-8 as the server expects. If a request containing form data encoded in a non-UTF8 charset is handled
by your view code, eventually the request code accessed within your view will throw an error when it
can’t decode some high-order character encoded in another character set within form data, e.g., when
request.params[’somename’] is accessed.

If you are using the Response class to generate a response, or if you use the render_template_*
templating APIs, the UTF-8 charset is set automatically as the default via the Content-Type
header. If you return a Content-Type header without an explicit charset, a request will add a
;charset=utf-8 trailer to the Content-Type header value for you, for response content types
that are textual (e.g. text/html, application/xml, etc) as it is rendered. If you are using your
own response object, you will need to ensure you do this yourself.

Only the values of request params obtained via request.params, request.GET or
request.POST are decoded to Unicode objects implicitly in the Pyramid default configuration.
The keys are still (byte) strings.

7.9 Alternate View Callable Argument/Calling Conventions

Usually, view callables are defined to accept only a single argument: request. However, view callables
may alternately be defined as classes, functions, or any callable that accept two positional arguments: a
context resource as the first argument and a request as the second argument.

The context and request arguments passed to a view function defined in this style can be defined as
follows:

context

The resource object found via tree traversal or URL dispatch.

request A Pyramid Request object representing the current WSGI request.

The following types work as view callables in this style:

1. Functions that accept two arguments: context, and request, e.g.:

1 from pyramid.response import Response
2

3 def view(context, request):
4 return Response(’OK’)

89

7. VIEWS

2. Classes that have an __init__ method that accepts context, request and a __call__
method which accepts no arguments, e.g.:

1 from pyramid.response import Response
2

3 class view(object):
4 def __init__(self, context, request):
5 self.context = context
6 self.request = request
7

8 def __call__(self):
9 return Response(’OK’)

3. Arbitrary callables that have a __call__ method that accepts context, request, e.g.:

1 from pyramid.response import Response
2

3 class View(object):
4 def __call__(self, context, request):
5 return Response(’OK’)
6 view = View() # this is the view callable

This style of calling convention is most useful for traversal based applications, where the context object
is frequently used within the view callable code itself.

No matter which view calling convention is used, the view code always has access to the context via
request.context.

7.10 Pylons-1.0-Style “Controller” Dispatch

A package named pyramid_handlers (available from PyPI) provides an analogue of Pylons -style “con-
trollers”, which are a special kind of view class which provides more automation when your application
uses URL dispatch solely.

90

CHAPTER

EIGHT

RENDERERS

A view callable needn’t always return a Response object. If a view happens to return something which
does not implement the Pyramid Response interface, Pyramid will attempt to use a renderer to construct
a response. For example:

1 from pyramid.view import view_config
2

3 @view_config(renderer=’json’)
4 def hello_world(request):
5 return {’content’:’Hello!’}

The above example returns a dictionary from the view callable. A dictionary does not implement the Pyra-
mid response interface, so you might believe that this example would fail. However, since a renderer
is associated with the view callable through its view configuration (in this case, using a renderer ar-
gument passed to view_config()), if the view does not return a Response object, the renderer will
attempt to convert the result of the view to a response on the developer’s behalf.

Of course, if no renderer is associated with a view’s configuration, returning anything except an object
which implements the Response interface will result in an error. And, if a renderer is used, whatever is
returned by the view must be compatible with the particular kind of renderer used, or an error may occur
during view invocation.

One exception exists: it is always OK to return a Response object, even when a renderer is configured.
If a view callable returns a response object from a view that is configured with a renderer, the renderer is
bypassed entirely.

Various types of renderers exist, including serialization renderers and renderers which use templating
systems. See also Writing View Callables Which Use a Renderer.

91

8. RENDERERS

8.1 Writing View Callables Which Use a Renderer

As we’ve seen, view callables needn’t always return a Response object. Instead, they may return an
arbitrary Python object, with the expectation that a renderer will convert that object into a response
instance on your behalf. Some renderers use a templating system; other renderers use object serialization
techniques.

View configuration can vary the renderer associated with a view callable via the renderer attribute.
For example, this call to add_view() associates the json renderer with a view callable:

1 config.add_view(’myproject.views.my_view’, renderer=’json’)

When this configuration is added to an application, the myproject.views.my_view view callable
will now use a json renderer, which renders view return values to a JSON response serialization.

Other built-in renderers include renderers which use the Chameleon templating language to render a
dictionary to a response. Additional renderers can be added by developers to the system as necessary (see
Adding and Changing Renderers).

Views which use a renderer and return a non-Response value can vary non-body response attributes (such
as headers and the HTTP status code) by attaching a property to the request.response attribute See
Varying Attributes of Rendered Responses.

If the view callable associated with a view configuration returns a Response object directly, any renderer
associated with the view configuration is ignored, and the response is passed back to Pyramid unchanged.
For example, if your view callable returns an instance of the pyramid.response.Response class
as a response, no renderer will be employed.

1 from pyramid.response import Response
2 from pyramid.view import view_config
3

4 @view_config(renderer=’json’)
5 def view(request):
6 return Response(’OK’) # json renderer avoided

Likewise for an HTTP exception response:

1 from pyramid.httpexceptions import HTTPNotFound
2 from pyramid.view import view_config
3

4 @view_config(renderer=’json’)
5 def view(request):
6 return HTTPFound(location=’http://example.com’) # json renderer avoided

92

8.2. BUILT-IN RENDERERS

You can of course also return the request.response attribute instead to avoid rendering:

1 from pyramid.view import view_config
2

3 @view_config(renderer=’json’)
4 def view(request):
5 request.response.body = ’OK’
6 return request.response # json renderer avoided

8.2 Built-In Renderers

Several built-in renderers exist in Pyramid. These renderers can be used in the renderer attribute of
view configurations.

8.2.1 string: String Renderer

The string renderer is a renderer which renders a view callable result to a string. If a view callable
returns a non-Response object, and the string renderer is associated in that view’s configuration, the
result will be to run the object through the Python str function to generate a string. Note that if a Unicode
object is returned by the view callable, it is not str() -ified.

Here’s an example of a view that returns a dictionary. If the string renderer is specified in the con-
figuration for this view, the view will render the returned dictionary to the str() representation of the
dictionary:

1 from pyramid.response import Response
2 from pyramid.view import view_config
3

4 @view_config(renderer=’string’)
5 def hello_world(request):
6 return {’content’:’Hello!’}

The body of the response returned by such a view will be a string representing the str() serialization of
the return value:

1 {’content’: ’Hello!’}

Views which use the string renderer can vary non-body response attributes by using the API of the
request.response attribute. See Varying Attributes of Rendered Responses.

93

8. RENDERERS

8.2.2 json: JSON Renderer

The json renderer renders view callable results to JSON. It passes the return value through the
json.dumps standard library function, and wraps the result in a response object. It also sets the re-
sponse content-type to application/json.

Here’s an example of a view that returns a dictionary. Since the json renderer is specified in the config-
uration for this view, the view will render the returned dictionary to a JSON serialization:

1 from pyramid.response import Response
2 from pyramid.view import view_config
3

4 @view_config(renderer=’json’)
5 def hello_world(request):
6 return {’content’:’Hello!’}

The body of the response returned by such a view will be a string representing the JSON serialization of
the return value:

1 ’{"content": "Hello!"}’

The return value needn’t be a dictionary, but the return value must contain values serializable by
json.dumps().

You can configure a view to use the JSON renderer by naming json as the renderer argument of a
view configuration, e.g. by using add_view():

1 config.add_view(’myproject.views.hello_world’,
2 name=’hello’,
3 context=’myproject.resources.Hello’,
4 renderer=’json’)

Views which use the JSON renderer can vary non-body response attributes by using the api of the
request.response attribute. See Varying Attributes of Rendered Responses.

8.3 JSONP Renderer

This feature is new in Pyramid 1.1.

94

8.3. JSONP RENDERER

pyramid.renderers.JSONP is a JSONP renderer factory helper which implements a hybrid
json/jsonp renderer. JSONP is useful for making cross-domain AJAX requests.

Unlike other renderers, a JSONP renderer needs to be configured at startup time “by hand”. Configure a
JSONP renderer using the pyramid.config.Configurator.add_renderer() method:

from pyramid.config import Configurator

config = Configurator()
config.add_renderer(’jsonp’, JSONP(param_name=’callback’))

Once this renderer is registered via add_renderer() as above, you
can use jsonp as the renderer= parameter to @view_config or
pyramid.config.Configurator.add_view‘():

from pyramid.view import view_config

@view_config(renderer=’jsonp’)
def myview(request):

return {’greeting’:’Hello world’}

When a view is called that uses a JSONP renderer:

• If there is a parameter in the request’s HTTP query string (aka request.GET) that matches the
param_name of the registered JSONP renderer (by default, callback), the renderer will return
a JSONP response.

• If there is no callback parameter in the request’s query string, the renderer will return a ‘plain’
JSON response.

Javscript library AJAX functionality will help you make JSONP requests. For example, JQuery has a
getJSON function, and has equivalent (but more complicated) functionality in its ajax function.

For example (Javascript):

var api_url = ’http://api.geonames.org/timezoneJSON’ +
’?lat=38.301733840000004’ +
’&lng=-77.45869621’ +
’&username=fred’ +
’&callback=?’;

jqhxr = $.getJSON(api_url);

The string callback=? above in the the url param to the JQuery getAjax function indicates to
jQuery that the query should be made as a JSONP request; the callback parameter will be automati-
cally filled in for you and used.

95

http://en.wikipedia.org/wiki/JSONP
http://api.jquery.com/jQuery.getJSON/
http://api.jquery.com/jQuery.ajax/

8. RENDERERS

8.3.1 *.pt or *.txt: Chameleon Template Renderers

Two built-in renderers exist for Chameleon templates.

If the renderer attribute of a view configuration is an absolute path, a relative path or asset specification
which has a final path element with a filename extension of .pt, the Chameleon ZPT renderer is used.
See Chameleon ZPT Templates for more information about ZPT templates.

If the renderer attribute of a view configuration is an absolute path or a asset specification which
has a final path element with a filename extension of .txt, the Chameleon text renderer is used. See
Templating with Chameleon Text Templates for more information about Chameleon text templates.

The behavior of these renderers is the same, except for the engine used to render the template.

When a renderer attribute that names a template path or asset specification (e.g.
myproject:templates/foo.pt or myproject:templates/foo.txt) is used, the view
must return a Response object or a Python dictionary. If the view callable with an associated template
returns a Python dictionary, the named template will be passed the dictionary as its keyword arguments,
and the template renderer implementation will return the resulting rendered template in a response to the
user. If the view callable returns anything but a Response object or a dictionary, an error will be raised.

Before passing keywords to the template, the keyword arguments derived from the dictionary returned
by the view are augmented. The callable object – whatever object was used to define the view – will be
automatically inserted into the set of keyword arguments passed to the template as the view keyword.
If the view callable was a class, the view keyword will be an instance of that class. Also inserted into
the keywords passed to the template are renderer_name (the string used in the renderer attribute
of the directive), renderer_info (an object containing renderer-related information), context (the
context resource of the view used to render the template), and request (the request passed to the view
used to render the template).

Here’s an example view configuration which uses a Chameleon ZPT renderer:

1 # config is an instance of pyramid.config.Configurator
2

3 config.add_view(’myproject.views.hello_world’,
4 name=’hello’,
5 context=’myproject.resources.Hello’,
6 renderer=’myproject:templates/foo.pt’)

Here’s an example view configuration which uses a Chameleon text renderer:

96

8.3. JSONP RENDERER

1 config.add_view(’myproject.views.hello_world’,
2 name=’hello’,
3 context=’myproject.resources.Hello’,
4 renderer=’myproject:templates/foo.txt’)

Views which use a Chameleon renderer can vary response attributes by using the API of the
request.response attribute. See Varying Attributes of Rendered Responses.

8.3.2 *.mak or *.mako: Mako Template Renderer

The Mako template renderer renders views using a Mako template. When used, the view must return a
Response object or a Python dictionary. The dictionary items will then be used in the global template
space. If the view callable returns anything but a Response object or a dictionary, an error will be raised.

When using a renderer argument to a view configuration to specify a Mako template, the value of the
renderer may be a path relative to the mako.directories setting (e.g. some/template.mak)
or, alternately, it may be a asset specification (e.g. apackage:templates/sometemplate.mak).
Mako templates may internally inherit other Mako templates using a relative filename or a asset specifi-
cation as desired.

Here’s an example view configuration which uses a relative path:

1 # config is an instance of pyramid.config.Configurator
2

3 config.add_view(’myproject.views.hello_world’,
4 name=’hello’,
5 context=’myproject.resources.Hello’,
6 renderer=’foo.mak’)

It’s important to note that in Mako’s case, the ‘relative’ path name foo.mak above is not rel-
ative to the package, but is relative to the directory (or directories) configured for Mako via the
mako.directories configuration file setting.

The renderer can also be provided in asset specification format. Here’s an example view configuration
which uses one:

1 config.add_view(’myproject.views.hello_world’,
2 name=’hello’,
3 context=’myproject.resources.Hello’,
4 renderer=’mypackage:templates/foo.mak’)

97

8. RENDERERS

The above configuration will use the file named foo.mak in the templates directory of the
mypackage package.

The Mako template renderer can take additional arguments beyond the standard
pyramid.reload_templates setting, see the Environment Variables and .ini File Settings
for additional Mako Template Render Settings.

8.4 Varying Attributes of Rendered Responses

Before a response constructed by a renderer is returned to Pyramid, several attributes of the request are
examined which have the potential to influence response behavior.

View callables that don’t directly return a response should use the API of the
pyramid.response.Response attribute available as request.response during their ex-
ecution, to influence associated response behavior.

For example, if you need to change the response status from within a view callable that uses a renderer,
assign the status attribute to the response attribute of the request before returning a result:

1 from pyramid.view import view_config
2

3 @view_config(name=’gone’, renderer=’templates/gone.pt’)
4 def myview(request):
5 request.response.status = ’404 Not Found’
6 return {’URL’:request.URL}

Note that mutations of request.response in views which return a Response object directly will have
no effect unless the response object returned is request.response. For example, the following ex-
ample calls request.response.set_cookie, but this call will have no effect, because a different
Response object is returned.

1 from pyramid.response import Response
2

3 def view(request):
4 request.response.set_cookie(’abc’, ’123’) # this has no effect
5 return Response(’OK’) # because we’re returning a different response

If you mutate request.response and you’d like the mutations to have an effect, you must return
request.response:

98

8.5. DEPRECATED MECHANISM TO VARY ATTRIBUTES OF RENDERED RESPONSES

1 def view(request):
2 request.response.set_cookie(’abc’, ’123’)
3 return request.response

For more information on attributes of the request, see the API documentation in
pyramid.request. For more information on the API of request.response, see
pyramid.request.Request.response.

8.5 Deprecated Mechanism to Vary Attributes of Rendered
Responses

This section describes behavior deprecated in Pyramid 1.1.

In previous releases of Pyramid (1.0 and before), the request.response attribute did not exist. In-
stead, Pyramid required users to set special response_ -prefixed attributes of the request to influence
response behavior. As of Pyramid 1.1, those request attributes are deprecated and their use will cause a
deprecation warning to be issued when used. Until their existence is removed completely, we document
them below, for benefit of people with older code bases.

response_content_type Defines the content-type of the resulting response, e.g. text/xml.

response_headerlist A sequence of tuples describing header values that should be set in the re-
sponse, e.g. [(’Set-Cookie’, ’abc=123’), (’X-My-Header’, ’foo’)].

response_status A WSGI-style status code (e.g. 200 OK) describing the status of the response.

response_charset The character set (e.g. UTF-8) of the response.

response_cache_for A value in seconds which will influence Cache-Control and Expires
headers in the returned response. The same can also be achieved by returning various values in the
response_headerlist, this is purely a convenience.

99

8. RENDERERS

8.6 Adding and Changing Renderers

New templating systems and serializers can be associated with Pyramid renderer names. To this end,
configuration declarations can be made which change an existing renderer factory, and which add a new
renderer factory.

Renderers can be registered imperatively using the pyramid.config.Configurator.add_renderer()
API.

For example, to add a renderer which renders views which have a renderer attribute that is a path that
ends in .jinja2:

1 config.add_renderer(’.jinja2’, ’mypackage.MyJinja2Renderer’)

The first argument is the renderer name. The second argument is a reference to an implementation of a
renderer factory or a dotted Python name referring to such an object.

8.6.1 Adding a New Renderer

You may add a new renderer by creating and registering a renderer factory.

A renderer factory implementation is typically a class with the following interface:

1 class RendererFactory:
2 def __init__(self, info):
3 """ Constructor: info will be an object having the
4 following attributes: name (the renderer name), package
5 (the package that was ’current’ at the time the
6 renderer was registered), type (the renderer type
7 name), registry (the current application registry) and
8 settings (the deployment settings dictionary). """
9

10 def __call__(self, value, system):
11 """ Call the renderer implementation with the value
12 and the system value passed in as arguments and return
13 the result (a string or unicode object). The value is
14 the return value of a view. The system value is a
15 dictionary containing available system values
16 (e.g. view, context, and request). """

100

8.6. ADDING AND CHANGING RENDERERS

The formal interface definition of the info object passed to a renderer factory constructor is available as
pyramid.interfaces.IRendererInfo.

There are essentially two different kinds of renderer factories:

• A renderer factory which expects to accept an asset specification, or an absolute path, as the name
attribute of the info object fed to its constructor. These renderer factories are registered with a
name value that begins with a dot (.). These types of renderer factories usually relate to a file on
the filesystem, such as a template.

• A renderer factory which expects to accept a token that does not represent a filesystem path or an
asset specification in the name attribute of the info object fed to its constructor. These renderer
factories are registered with a name value that does not begin with a dot. These renderer factories
are typically object serializers.

Asset Specifications

An asset specification is a colon-delimited identifier for an asset. The colon separates
a Python package name from a package subpath. For example, the asset specification
my.package:static/baz.css identifies the file named baz.css in the static subdirec-
tory of the my.package Python package.

Here’s an example of the registration of a simple renderer factory via add_renderer():

1 # config is an instance of pyramid.config.Configurator
2

3 config.add_renderer(name=’amf’, factory=’my.package.MyAMFRenderer’)

Adding the above code to your application startup configuration will allow you to use the
my.package.MyAMFRenderer renderer factory implementation in view configurations. Your ap-
plication can use this renderer by specifying amf in the renderer attribute of a view configuration:

1 from pyramid.view import view_config
2

3 @view_config(renderer=’amf’)
4 def myview(request):
5 return {’Hello’:’world’}

At startup time, when a view configuration is encountered, which has a name attribute that does not con-
tain a dot, the full name value is used to construct a renderer from the associated renderer factory. In this
case, the view configuration will create an instance of an MyAMFRenderer for each view configuration

101

8. RENDERERS

which includes amf as its renderer value. The name passed to the MyAMFRenderer constructor will
always be amf.

Here’s an example of the registration of a more complicated renderer factory, which expects to be passed
a filesystem path:

1 config.add_renderer(name=’.jinja2’,
2 factory=’my.package.MyJinja2Renderer’)

Adding the above code to your application startup will allow you to use the
my.package.MyJinja2Renderer renderer factory implementation in view configurations by
referring to any renderer which ends in .jinja in the renderer attribute of a view configuration:

1 from pyramid.view import view_config
2

3 @view_config(renderer=’templates/mytemplate.jinja2’)
4 def myview(request):
5 return {’Hello’:’world’}

When a view configuration is encountered at startup time, which has a name attribute that does contain
a dot, the value of the name attribute is split on its final dot. The second element of the split is typ-
ically the filename extension. This extension is used to look up a renderer factory for the configured
view. Then the value of renderer is passed to the factory to create a renderer for the view. In this
case, the view configuration will create an instance of a MyJinja2Renderer for each view config-
uration which includes anything ending with .jinja2 in its renderer value. The name passed to
the MyJinja2Renderer constructor will be the full value that was set as renderer= in the view
configuration.

8.6.2 Changing an Existing Renderer

You can associate more than one filename extension with the same existing renderer implementa-
tion as necessary if you need to use a different file extension for the same kinds of templates.
For example, to associate the .zpt extension with the Chameleon ZPT renderer factory, use the
pyramid.config.Configurator.add_renderer() method:

1 config.add_renderer(’.zpt’, ’pyramid.chameleon_zpt.renderer_factory’)

After you do this, Pyramid will treat templates ending in both the .pt and .zpt filename extensions as
Chameleon ZPT templates.

To change the default mapping in which files with a .pt extension are rendered via a Chameleon ZPT
page template renderer, use a variation on the following in your application’s startup code:

102

8.7. OVERRIDING A RENDERER AT RUNTIME

1 config.add_renderer(’.pt’, ’mypackage.pt_renderer’)

After you do this, the renderer factory in mypackage.pt_renderer will be used to render templates
which end in .pt, replacing the default Chameleon ZPT renderer.

To associate a default renderer with all view configurations (even ones which do not possess a renderer
attribute), pass None as the name attribute to the renderer tag:

1 config.add_renderer(None, ’mypackage.json_renderer_factory’)

8.7 Overriding A Renderer At Runtime

This is an advanced feature, not typically used by “civilians”.

In some circumstances, it is necessary to instruct the system to ignore the static renderer declaration
provided by the developer in view configuration, replacing the renderer with another after a request
starts. For example, an “omnipresent” XML-RPC implementation that detects that the request is from
an XML-RPC client might override a view configuration statement made by the user instructing the view
to use a template renderer with one that uses an XML-RPC renderer. This renderer would produce an
XML-RPC representation of the data returned by an arbitrary view callable.

To use this feature, create a NewRequest subscriber which sniffs at the request data and which condi-
tionally sets an override_renderer attribute on the request itself, which is the name of a registered
renderer. For example:

1 from pyramid.event import subscriber
2 from pyramid.event import NewRequest
3

4 @subscriber(NewRequest)
5 def set_xmlrpc_params(event):
6 request = event.request
7 if (request.content_type == ’text/xml’
8 and request.method == ’POST’
9 and not ’soapaction’ in request.headers

10 and not ’x-pyramid-avoid-xmlrpc’ in request.headers):
11 params, method = parse_xmlrpc_request(request)
12 request.xmlrpc_params, request.xmlrpc_method = params, method
13 request.is_xmlrpc = True
14 request.override_renderer = ’xmlrpc’
15 return True

103

8. RENDERERS

The result of such a subscriber will be to replace any existing static renderer configured by the developer
with a (notional, nonexistent) XML-RPC renderer if the request appears to come from an XML-RPC
client.

104

CHAPTER

NINE

TEMPLATES

A template is a file on disk which can be used to render dynamic data provided by a view. Pyramid offers
a number of ways to perform templating tasks out of the box, and provides add-on templating support
through a set of bindings packages.

Out of the box, Pyramid provides templating via the Chameleon and Mako templating libraries.
Chameleon provides support for two different types of templates: ZPT templates, and text templates.

Before discussing how built-in templates are used in detail, we’ll discuss two ways to render templates
within Pyramid in general: directly, and via renderer configuration.

9.1 Using Templates Directly

The most straightforward way to use a template within Pyramid is to cause it to be rendered directly
within a view callable. You may use whatever API is supplied by a given templating engine to do so.

Pyramid provides various APIs that allow you to render templates directly from within a view callable.
For example, if there is a Chameleon ZPT template named foo.pt in a directory named templates
in your application, you can render the template from within the body of a view callable like so:

1 from pyramid.renderers import render_to_response
2

3 def sample_view(request):
4 return render_to_response(’templates/foo.pt’,
5 {’foo’:1, ’bar’:2},
6 request=request)

105

9. TEMPLATES

Earlier iterations of this documentation (pre-version-1.3) en-
couraged the application developer to use ZPT-specific APIs such as
pyramid.chameleon_zpt.render_template_to_response() and
pyramid.chameleon_zpt.render_template() to render templates directly. This
style of rendering still works, but at least for purposes of this documentation, those functions are
deprecated. Application developers are encouraged instead to use the functions available in the
pyramid.renderers module to perform rendering tasks. This set of functions works to render
templates for all renderer extensions registered with Pyramid.

The sample_view view callable function above returns a response object which contains the body
of the templates/foo.pt template. In this case, the templates directory should live in the same
directory as the module containing the sample_view function. The template author will have the names
foo and bar available as top-level names for replacement or comparison purposes.

In the example above, the path templates/foo.pt is relative to the directory containing the file
which defines the view configuration. In this case, this is the directory containing the file that defines
the sample_view function. Although a renderer path is usually just a simple relative pathname, a path
named as a renderer can be absolute, starting with a slash on UNIX or a drive letter prefix on Windows.

Only Chameleon templates support defining a renderer for a template relative to the loca-
tion of the module where the view callable is defined. Mako templates, and other templating sys-
tem bindings work differently. In particular, Mako templates use a “lookup path” as defined by the
mako.directories configuration file instead of treating relative paths as relative to the current
view module. See Templating With Mako Templates.

The path can alternately be a asset specification in the form
some.dotted.package_name:relative/path. This makes it possible to address template
assets which live in another package. For example:

1 from pyramid.renderers import render_to_response
2

3 def sample_view(request):
4 return render_to_response(’mypackage:templates/foo.pt’,
5 {’foo’:1, ’bar’:2},
6 request=request)

An asset specification points at a file within a Python package. In this case, it points at a file named
foo.pt within the templates directory of the mypackage package. Using a asset specification
instead of a relative template name is usually a good idea, because calls to render_to_response
using asset specifications will continue to work properly if you move the code containing them around.

106

9.1. USING TEMPLATES DIRECTLY

Mako templating system bindings also respect absolute asset specifications as an argument to any
of the render* commands. If a template name defines a : (colon) character and is not an absolute
path, it is treated as an absolute asset specification.

In the examples above we pass in a keyword argument named request representing the current Pyramid
request. Passing a request keyword argument will cause the render_to_response function to supply
the renderer with more correct system values (see System Values Used During Rendering), because most
of the information required to compose proper system values is present in the request. If your template
relies on the name request or context, or if you’ve configured special renderer globals, make sure
to pass request as a keyword argument in every call to to a pyramid.renderers.render_*
function.

Every view must return a response object, except for views which use a renderer named via view configu-
ration (which we’ll see shortly). The pyramid.renderers.render_to_response() function is
a shortcut function that actually returns a response object. This allows the example view above to simply
return the result of its call to render_to_response() directly.

Obviously not all APIs you might call to get response data will return a response object. For exam-
ple, you might render one or more templates to a string that you want to use as response data. The
pyramid.renderers.render() API renders a template to a string. We can manufacture a re-
sponse object directly, and use that string as the body of the response:

1 from pyramid.renderers import render
2 from pyramid.response import Response
3

4 def sample_view(request):
5 result = render(’mypackage:templates/foo.pt’,
6 {’foo’:1, ’bar’:2},
7 request=request)
8 response = Response(result)
9 return response

Because view callable functions are typically the only code in Pyramid that need to know anything about
templates, and because view functions are very simple Python, you can use whatever templating system
you’re most comfortable with within Pyramid. Install the templating system, import its API functions into
your views module, use those APIs to generate a string, then return that string as the body of a Pyramid
Response object.

For example, here’s an example of using “raw” Mako from within a Pyramid view:

107

http://www.makotemplates.org/

9. TEMPLATES

1 from mako.template import Template
2 from pyramid.response import Response
3

4 def make_view(request):
5 template = Template(filename=’/templates/template.mak’)
6 result = template.render(name=request.params[’name’])
7 response = Response(result)
8 return response

You probably wouldn’t use this particular snippet in a project, because it’s easier to use the Mako renderer
bindings which already exist in Pyramid. But if your favorite templating system is not supported as a
renderer extension for Pyramid, you can create your own simple combination as shown above.

If you use third-party templating languages without cooperating Pyramid bindings directly within
view callables, the auto-template-reload strategy explained in Automatically Reloading Templates will
not be available, nor will the template asset overriding capability explained in Overriding Assets be
available, nor will it be possible to use any template using that language as a renderer. However,
it’s reasonably easy to write custom templating system binding packages for use under Pyramid so
that templates written in the language can be used as renderers. See Adding and Changing Renderers
for instructions on how to create your own template renderer and Available Add-On Template System
Bindings for example packages.

If you need more control over the status code and content-type, or other response attributes from views
that use direct templating, you may set attributes on the response that influence these values.

Here’s an example of changing the content-type and status of the response object returned by
render_to_response():

1 from pyramid.renderers import render_to_response
2

3 def sample_view(request):
4 response = render_to_response(’templates/foo.pt’,
5 {’foo’:1, ’bar’:2},
6 request=request)
7 response.content_type = ’text/plain’
8 response.status_int = 204
9 return response

Here’s an example of manufacturing a response object using the result of render() (a string):

108

9.2. SYSTEM VALUES USED DURING RENDERING

1 from pyramid.renderers import render
2 from pyramid.response import Response
3

4 def sample_view(request):
5 result = render(’mypackage:templates/foo.pt’,
6 {’foo’:1, ’bar’:2},
7 request=request)
8 response = Response(result)
9 response.content_type = ’text/plain’

10 return response

9.2 System Values Used During Rendering

When a template is rendered using render_to_response() or render(), the renderer represent-
ing the template will be provided with a number of system values. These values are provided in a dictio-
nary to the renderer and include:

context The current Pyramid context if request was provided as a keyword argument, or None.

request The request provided as a keyword argument.

renderer_name The renderer name used to perform the rendering, e.g.
mypackage:templates/foo.pt.

renderer_info An object implementing the pyramid.interfaces.IRendererInfo inter-
face. Basically, an object with the following attributes: name, package and type.

You can define more values which will be passed to every template executed as a result of rendering by
defining renderer globals.

What any particular renderer does with these system values is up to the renderer itself, but most template
renderers, including Chameleon and Mako renderers, make these names available as top-level template
variables.

109

9. TEMPLATES

9.3 Templates Used as Renderers via Configuration

An alternative to using render_to_response() to render templates manually in your view callable
code, is to specify the template as a renderer in your view configuration. This can be done with any of the
templating languages supported by Pyramid.

To use a renderer via view configuration, specify a template asset specification as the renderer ar-
gument, or attribute to the view configuration of a view callable. Then return a dictionary from that
view callable. The dictionary items returned by the view callable will be made available to the renderer
template as top-level names.

The association of a template as a renderer for a view configuration makes it possible to replace code
within a view callable that handles the rendering of a template.

Here’s an example of using a view_config decorator to specify a view configuration that names a
template renderer:

1 from pyramid.view import view_config
2

3 @view_config(renderer=’templates/foo.pt’)
4 def my_view(request):
5 return {’foo’:1, ’bar’:2}

You do not need to supply the request value as a key in the dictionary result returned from a
renderer-configured view callable. Pyramid automatically supplies this value for you so that the “most
correct” system values are provided to the renderer.

The renderer argument to the @view_config configuration decorator shown above is the
template path. In the example above, the path templates/foo.pt is relative. Relative to what,
you ask? Because we’re using a Chameleon renderer, it means “relative to the directory in which
the file which defines the view configuration lives”. In this case, this is the directory containing the
file that defines the my_view function. View-configuration-relative asset specifications work only in
Chameleon, not in Mako templates.

Similar renderer configuration can be done imperatively. See Writing View Callables Which Use a Ren-
derer. See also Built-In Renderers.

Although a renderer path is usually just a simple relative pathname, a path named as a renderer can be
absolute, starting with a slash on UNIX or a drive letter prefix on Windows. The path can alternately

110

9.4. CHAMELEON ZPT TEMPLATES

be an asset specification in the form some.dotted.package_name:relative/path, making it
possible to address template assets which live in another package.

Not just any template from any arbitrary templating system may be used as a renderer. Bindings must
exist specifically for Pyramid to use a templating language template as a renderer. Currently, Pyramid
has built-in support for two Chameleon templating languages: ZPT and text, and the Mako templating
system. See Built-In Renderers for a discussion of their details. Pyramid also supports the use of Jinja2
templates as renderers. See Available Add-On Template System Bindings.

Why Use A Renderer via View Configuration

Using a renderer in view configuration is usually a better way to render templates than using any ren-
dering API directly from within a view callable because it makes the view callable more unit-testable.
Views which use templating or rendering APIs directly must return a Response object. Making test-
ing assertions about response objects is typically an indirect process, because it means that your
test code often needs to somehow parse information out of the response body (often HTML). View
callables configured with renderers externally via view configuration typically return a dictionary,
as above. Making assertions about results returned in a dictionary is almost always more direct and
straightforward than needing to parse HTML.

By default, views rendered via a template renderer return a Response object which has a status code
of 200 OK, and a content-type of text/html. To vary attributes of the response of a view that
uses a renderer, such as the content-type, headers, or status attributes, you must use the API of the
pyramid.response.Response object exposed as request.response within the view before
returning the dictionary. See Varying Attributes of Rendered Responses for more information.

The same set of system values are provided to templates rendered via a renderer view configuration as
those provided to templates rendered imperatively. See System Values Used During Rendering.

9.4 Chameleon ZPT Templates

Like Zope, Pyramid uses ZPT (Zope Page Templates) as its default templating language. However, Pyra-
mid uses a different implementation of the ZPT specification than Zope does: the Chameleon templating
engine. The Chameleon engine complies largely with the Zope Page Template template specification.
However, it is significantly faster.

The language definition documentation for Chameleon ZPT-style templates is available from the
Chameleon website.

111

http://wiki.zope.org/ZPT/FrontPage
http://chameleon.repoze.org/
http://chameleon.repoze.org/

9. TEMPLATES

Chameleon only works on CPython platforms and Google App Engine. On Jython and
other non-CPython platforms, you should use Mako (see Templating With Mako Templates) or
pyramid_jinja2 instead. See Available Add-On Template System Bindings.

Given a Chameleon ZPT template named foo.pt in a directory in your application named templates,
you can render the template as a renderer like so:

1 from pyramid.view import view_config
2

3 @view_config(renderer=’templates/foo.pt’)
4 def my_view(request):
5 return {’foo’:1, ’bar’:2}

See also Built-In Renderers for more general information about renderers, including Chameleon ZPT
renderers.

9.4.1 A Sample ZPT Template

Here’s what a simple Chameleon ZPT template used under Pyramid might look like:

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
3 <html xmlns="http://www.w3.org/1999/xhtml"
4 xmlns:tal="http://xml.zope.org/namespaces/tal">
5 <head>
6 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
7 <title>${project} Application</title>
8 </head>
9 <body>

10 <h1 class="title">Welcome to <code>${project}</code>, an
11 application generated by the <a
12 href="http://docs.pylonsproject.org/projects/pyramid/current/"
13 >pyramid web
14 application framework.</h1>
15 </body>
16 </html>

Note the use of Genshi -style ${replacements} above. This is one of the ways that Chameleon ZPT
differs from standard ZPT. The above template expects to find a project key in the set of keywords
passed in to it via render() or render_to_response(). Typical ZPT attribute-based syntax (e.g.
tal:content and tal:replace) also works in these templates.

112

9.4. CHAMELEON ZPT TEMPLATES

9.4.2 Using ZPT Macros in Pyramid

When a renderer is used to render a template, Pyramid makes at least two top-level names available to
the template by default: context and request. One of the common needs in ZPT-based templates
is to use one template’s “macros” from within a different template. In Zope, this is typically handled by
retrieving the template from the context. But the context in Pyramid is a resource object, and templates
cannot usually be retrieved from resources. To use macros in Pyramid, you need to make the macro
template itself available to the rendered template by passing the macro template, or even the macro itself,
into the rendered template. To do this you can use the pyramid.renderers.get_renderer()
API to retrieve the macro template, and pass it into the template being rendered via the dictionary returned
by the view. For example, using a view configuration via a view_config decorator that uses a renderer:

1 from pyramid.renderers import get_renderer
2 from pyramid.view import view_config
3

4 @view_config(renderer=’templates/mytemplate.pt’)
5 def my_view(request):
6 main = get_renderer(’templates/master.pt’).implementation()
7 return {’main’:main}

Where templates/master.pt might look like so:

1 <html xmlns="http://www.w3.org/1999/xhtml"
2 xmlns:tal="http://xml.zope.org/namespaces/tal"
3 xmlns:metal="http://xml.zope.org/namespaces/metal">
4
5 <h1>
6 Hello Fred!
7 </h1>
8
9 </html>

And templates/mytemplate.pt might look like so:

1 <html xmlns="http://www.w3.org/1999/xhtml"
2 xmlns:tal="http://xml.zope.org/namespaces/tal"
3 xmlns:metal="http://xml.zope.org/namespaces/metal">
4
5 Chris
6
7 </html>

113

9. TEMPLATES

9.5 Templating with Chameleon Text Templates

Pyramid also allows for the use of templates which are composed entirely of non-XML text via
Chameleon. To do so, you can create templates that are entirely composed of text except for ${name}
-style substitution points.

Here’s an example usage of a Chameleon text template. Create a file on disk named mytemplate.txt
in your project’s templates directory with the following contents:

Hello, ${name}!

Then in your project’s views.py module, you can create a view which renders this template:

1 from pyramid.view import view_config
2

3 @view_config(renderer=’templates/mytemplate.txt’)
4 def my_view(request):
5 return {’name’:’world’}

When the template is rendered, it will show:

Hello, world!

If you’d rather use templates directly within a view callable (without the indirection of using a renderer),
see pyramid.chameleon_text for the API description.

See also Built-In Renderers for more general information about renderers, including Chameleon text
renderers.

9.6 Side Effects of Rendering a Chameleon Template

When a Chameleon template is rendered from a file, the templating engine writes a file in the same
directory as the template file itself as a kind of cache, in order to do less work the next time the template
needs to be read from disk. If you see “strange” .py files showing up in your templates directory (or
otherwise directly “next” to your templates), it is due to this feature.

If you’re using a version control system such as Subversion, you should configure it to ignore these files.
Here’s the contents of the author’s svn propedit svn:ignore . in each of my templates
directories.

114

9.7. NICER EXCEPTIONS IN CHAMELEON TEMPLATES

*.pt.py

*.txt.py

Note that I always name my Chameleon ZPT template files with a .pt extension and my Chameleon text
template files with a .txt extension so that these svn:ignore patterns work.

9.7 Nicer Exceptions in Chameleon Templates

The exceptions raised by Chameleon templates when a rendering fails are sometimes less than helpful.
Pyramid allows you to configure your application development environment so that exceptions generated
by Chameleon during template compilation and execution will contain nicer debugging information.

Template-debugging behavior is not recommended for production sites as it slows renderings;
it’s usually only desirable during development.

In order to turn on template exception debugging, you can use an environment variable setting or a con-
figuration file setting.

To use an environment variable, start your application under a shell using the
PYRAMID_DEBUG_TEMPLATES operating system environment variable set to 1, For example:

$ PYRAMID_DEBUG_TEMPLATES=1 bin/paster serve myproject.ini

To use a setting in the application .ini file for the same purpose, set the
pyramid.debug_templates key to true within the application’s configuration section, e.g.:

1 [app:main]
2 use = egg:MyProject
3 pyramid.debug_templates = true

With template debugging off, a NameError exception resulting from rendering a template with an un-
defined variable (e.g. ${wrong}) might end like this:

File "...", in __getitem__
raise NameError(key)

NameError: wrong

115

9. TEMPLATES

Note that the exception has no information about which template was being rendered when the error
occured. But with template debugging on, an exception resulting from the same problem might end like
so:

RuntimeError: Caught exception rendering template.
- Expression: ‘‘wrong‘‘
- Filename: /home/fred/env/proj/proj/templates/mytemplate.pt
- Arguments: renderer_name: proj:templates/mytemplate.pt

template: <PageTemplateFile - at 0x1d2ecf0>
xincludes: <XIncludes - at 0x1d3a130>
request: <Request - at 0x1d2ecd0>
project: proj
macros: <Macros - at 0x1d3aed0>
context: <MyResource None at 0x1d39130>
view: <function my_view at 0x1d23570>

NameError: wrong

The latter tells you which template the error occurred in, as well as displaying the arguments passed to
the template itself.

Turning on pyramid.debug_templates has the same effect as using the Chameleon en-
vironment variable CHAMELEON_DEBUG. See Chameleon Environment Variables for more informa-
tion.

9.8 Chameleon Template Internationalization

See Chameleon Template Support for Translation Strings for information about supporting international-
ized units of text within Chameleon templates.

9.9 Templating With Mako Templates

Mako is a templating system written by Mike Bayer. Pyramid has built-in bindings for the Mako tem-
plating system. The language definition documentation for Mako templates is available from the Mako
website.

To use a Mako template, given a Mako template file named foo.mak in the templates subdirectory
in your application package named mypackage, you can configure the template as a renderer like so:

116

http://chameleon.repoze.org/docs/latest/config.html#environment-variables
http://www.makotemplates.org/
http://www.makotemplates.org/

9.9. TEMPLATING WITH MAKO TEMPLATES

1 from pyramid.view import view_config
2

3 @view_config(renderer=’foo.mak’)
4 def my_view(request):
5 return {’project’:’my project’}

For the above view callable to work, the following setting needs to be present in the application stanza of
your configuration’s ini file:

mako.directories = mypackage:templates

This lets the Mako templating system know that it should look for templates in the templates subdi-
rectory of the mypackage Python package. See Mako Template Render Settings for more information
about the mako.directories setting and other Mako-related settings that can be placed into the ap-
plication’s ini file.

9.9.1 A Sample Mako Template

Here’s what a simple Mako template used under Pyramid might look like:

1 <html>
2 <head>
3 <title>${project} Application</title>
4 </head>
5 <body>
6 <h1 class="title">Welcome to <code>${project}</code>, an
7 application generated by the <a
8 href="http://docs.pylonsproject.org/projects/pyramid/current/"
9 >pyramid web application framework.</h1>

10 </body>
11 </html>

This template doesn’t use any advanced features of Mako, only the ${} replacement syntax for names
that are passed in as renderer globals. See the the Mako documentation to use more advanced features.

117

http://www.makotemplates.org/

9. TEMPLATES

9.10 Automatically Reloading Templates

It’s often convenient to see changes you make to a template file appear immediately without needing to
restart the application process. Pyramid allows you to configure your application development environ-
ment so that a change to a template will be automatically detected, and the template will be reloaded on
the next rendering.

Auto-template-reload behavior is not recommended for production sites as it slows rendering
slightly; it’s usually only desirable during development.

In order to turn on automatic reloading of templates, you can use an environment variable, or a configu-
ration file setting.

To use an environment variable, start your application under a shell using the
PYRAMID_RELOAD_TEMPLATES operating system environment variable set to 1, For example:

$ PYRAMID_RELOAD_TEMPLATES=1 bin/paster serve myproject.ini

To use a setting in the application .ini file for the same purpose, set the
pyramid.reload_templates key to true within the application’s configuration section,
e.g.:

1 [app:main]
2 use = egg:MyProject
3 pyramid.reload_templates = true

9.11 Available Add-On Template System Bindings

Jinja2 template bindings are available for Pyramid in the pyramid_jinja2 package. You can get the
latest release of this package from the Python package index (pypi).

118

http://pypi.python.org/pypi/pyramid_jinja2

CHAPTER

TEN

VIEW CONFIGURATION

View lookup is the Pyramid subsystem responsible for finding and invoking a view callable. View config-
uration controls how view lookup operates in your application. During any given request, view config-
uration information is compared against request data by the view lookup subsystem in order to find the
“best” view callable for that request.

In earlier chapters, you have been exposed to a few simple view configuration declarations without much
explanation. In this chapter we will explore the subject in detail.

10.1 Mapping a Resource or URL Pattern to a View Callable

A developer makes a view callable available for use within a Pyramid application via view configura-
tion. A view configuration associates a view callable with a set of statements that determine the set of
circumstances which must be true for the view callable to be invoked.

A view configuration statement is made about information present in the context resource and the request.

View configuration is performed in one of two ways:

• by running a scan against application source code which has a pyramid.view.view_config
decorator attached to a Python object as per Adding View Configuration Using the @view_config
Decorator.

• by using the pyramid.config.Configurator.add_view() method as per Adding View
Configuration Using add_view().

119

10. VIEW CONFIGURATION

10.1.1 View Configuration Parameters

All forms of view configuration accept the same general types of arguments.

Many arguments supplied during view configuration are view predicate arguments. View predicate argu-
ments used during view configuration are used to narrow the set of circumstances in which view lookup
will find a particular view callable.

View predicate attributes are an important part of view configuration that enables the view lookup subsys-
tem to find and invoke the appropriate view. The greater number of predicate attributes possessed by a
view’s configuration, the more specific the circumstances need to be before the registered view callable
will be invoked. The fewer number of predicates which are supplied to a particular view configuration,
the more likely it is that the associated view callable will be invoked. A view with five predicates will
always be found and evaluated before a view with two, for example. All predicates must match for the
associated view to be called.

This does not mean however, that Pyramid “stops looking” when it finds a view registration with pred-
icates that don’t match. If one set of view predicates does not match, the “next most specific” view (if
any) is consulted for predicates, and so on, until a view is found, or no view can be matched up with
the request. The first view with a set of predicates all of which match the request environment will be
invoked.

If no view can be found with predicates which allow it to be matched up with the request, Pyramid will
return an error to the user’s browser, representing a “not found” (404) page. See Changing the Not Found
View for more information about changing the default notfound view.

Other view configuration arguments are non-predicate arguments. These tend to modify the response of
the view callable or prevent the view callable from being invoked due to an authorization policy. The
presence of non-predicate arguments in a view configuration does not narrow the circumstances in which
the view callable will be invoked.

Non-Predicate Arguments

permission The name of a permission that the user must possess in order to invoke the view callable.
See Configuring View Security for more information about view security and permissions.

If permission is not supplied, no permission is registered for this view (it’s accessible by any
caller).

120

10.1. MAPPING A RESOURCE OR URL PATTERN TO A VIEW CALLABLE

attr The view machinery defaults to using the __call__ method of the view callable (or the function
itself, if the view callable is a function) to obtain a response. The attr value allows you to vary the
method attribute used to obtain the response. For example, if your view was a class, and the class
has a method named index and you wanted to use this method instead of the class’ __call__
method to return the response, you’d say attr="index" in the view configuration for the view.
This is most useful when the view definition is a class.

If attr is not supplied, None is used (implying the function itself if the view is a function, or the
__call__ callable attribute if the view is a class).

renderer Denotes the renderer implementation which will be used to construct a response from the
associated view callable’s return value. (see also Renderers).

This is either a single string term (e.g. json) or a string implying a path or asset specification (e.g.
templates/views.pt) naming a renderer implementation. If the renderer value does not
contain a dot (.), the specified string will be used to look up a renderer implementation, and that
renderer implementation will be used to construct a response from the view return value. If the
renderer value contains a dot (.), the specified term will be treated as a path, and the filename
extension of the last element in the path will be used to look up the renderer implementation, which
will be passed the full path.

When the renderer is a path, although a path is usually just a simple relative pathname (e.g.
templates/foo.pt, implying that a template named “foo.pt” is in the “templates” directory
relative to the directory of the current package), a path can be absolute, starting with a slash on
UNIX or a drive letter prefix on Windows. The path can alternately be a asset specification in
the form some.dotted.package_name:relative/path, making it possible to address
template assets which live in a separate package.

The renderer attribute is optional. If it is not defined, the “null” renderer is assumed (no ren-
dering is performed and the value is passed back to the upstream Pyramid machinery unchanged).
Note that if the view callable itself returns a response (see View Callable Responses), the specified
renderer implementation is never called.

http_cache When you supply an http_cache value to a view configuration, the Expires and
Cache-Control headers of a response generated by the associated view callable are modified.
The value for http_cache may be one of the following:

• A nonzero integer. If it’s a nonzero integer, it’s treated as a number of seconds. This num-
ber of seconds will be used to compute the Expires header and the Cache-Control:
max-age parameter of responses to requests which call this view. For example:
http_cache=3600 instructs the requesting browser to ‘cache this response for an hour,
please’.

121

10. VIEW CONFIGURATION

• A datetime.timedelta instance. If it’s a datetime.timedelta in-
stance, it will be converted into a number of seconds, and that number of sec-
onds will be used to compute the Expires header and the Cache-Control:
max-age parameter of responses to requests which call this view. For example:
http_cache=datetime.timedelta(days=1) instructs the requesting browser
to ‘cache this response for a day, please’.

• Zero (0). If the value is zero, the Cache-Control and Expires headers present in all re-
sponses from this view will be composed such that client browser cache (and any intermediate
caches) are instructed to never cache the response.

• A two-tuple. If it’s a two tuple (e.g. http_cache=(1, {’public’:True})),
the first value in the tuple may be a nonzero integer or a datetime.timedelta
instance; in either case this value will be used as the number of seconds to cache
the response. The second value in the tuple must be a dictionary. The values
present in the dictionary will be used as input to the Cache-Control response
header. For example: http_cache=(3600, {’public’:True}) means ‘cache
for an hour, and add public to the Cache-Control header of the response’. All keys
and values supported by the webob.cachecontrol.CacheControl interface may
be added to the dictionary. Supplying {’public’:True} is equivalent to calling
response.cache_control.public = True.

Providing a non-tuple value as http_cache is equivalent to calling
response.cache_expires(value) within your view’s body.

Providing a two-tuple value as http_cache is equivalent to calling
response.cache_expires(value[0], **value[1]) within your view’s body.

If you wish to avoid influencing, the Expires header, and instead wish to only influence
Cache-Control headers, pass a tuple as http_cache with the first element of None, e.g.:
(None, {’public’:True}).

wrapper The view name of a different view configuration which will receive the response body
of this view as the request.wrapped_body attribute of its own request, and the re-
sponse returned by this view as the request.wrapped_response attribute of its own re-
quest. Using a wrapper makes it possible to “chain” views together to form a composite re-
sponse. The response of the outermost wrapper view will be returned to the user. The wrap-
per view will be found as any view is found: see View Configuration. The “best” wrap-
per view will be found based on the lookup ordering: “under the hood” this wrapper view
is looked up via pyramid.view.render_view_to_response(context, request,
’wrapper_viewname’). The context and request of a wrapper view is the same context and
request of the inner view.

If wrapper is not supplied, no wrapper view is used.

122

10.1. MAPPING A RESOURCE OR URL PATTERN TO A VIEW CALLABLE

decorator A dotted Python name to a function (or the function itself) which will be used to decorate
the registered view callable. The decorator function will be called with the view callable as a single
argument. The view callable it is passed will accept (context, request). The decorator
must return a replacement view callable which also accepts (context, request).

mapper A Python object or dotted Python name which refers to a view mapper, or None. By default it is
None, which indicates that the view should use the default view mapper. This plug-point is useful
for Pyramid extension developers, but it’s not very useful for ‘civilians’ who are just developing
stock Pyramid applications. Pay no attention to the man behind the curtain.

Predicate Arguments

These arguments modify view lookup behavior. In general, the more predicate arguments that are sup-
plied, the more specific, and narrower the usage of the configured view.

name The view name required to match this view callable. A name argument is typically only used
when your application uses traversal. Read Traversal to understand the concept of a view name.

If name is not supplied, the empty string is used (implying the default view).

context An object representing a Python class that the context resource must be an instance of or the
interface that the context resource must provide in order for this view to be found and called. This
predicate is true when the context resource is an instance of the represented class or if the context
resource provides the represented interface; it is otherwise false.

If context is not supplied, the value None, which matches any resource, is used.

route_name If route_name is supplied, the view callable will be invoked only when the named
route has matched.

This value must match the name of a route configuration declaration (see URL Dispatch) that
must match before this view will be called. Note that the route configuration referred to by
route_name will usually have a *traverse token in the value of its pattern, representing a
part of the path that will be used by traversal against the result of the route’s root factory.

If route_name is not supplied, the view callable will only have a chance of being invoked if no
other route was matched. This is when the request/context pair found via resource location does
not indicate it matched any configured route.

request_type This value should be an interface that the request must provide in order for this view
to be found and called.

If request_type is not supplied, the value None is used, implying any request type.

This is an advanced feature, not often used by “civilians”.

123

10. VIEW CONFIGURATION

request_method This value can be one of the strings GET, POST, PUT, DELETE, or HEAD repre-
senting an HTTP REQUEST_METHOD. A view declaration with this argument ensures that the view
will only be called when the request’s method attribute (aka the REQUEST_METHOD of the WSGI
environment) string matches the supplied value.

If request_method is not supplied, the view will be invoked regardless of the
REQUEST_METHOD of the WSGI environment.

request_param This value can be any string. A view declaration with this argument ensures that
the view will only be called when the request has a key in the request.params dictionary (an
HTTP GET or POST variable) that has a name which matches the supplied value.

If the value supplied has a = sign in it, e.g. request_param="foo=123", then the key (foo)
must both exist in the request.params dictionary, and the value must match the right hand side
of the expression (123) for the view to “match” the current request.

If request_param is not supplied, the view will be invoked without consideration of keys and
values in the request.params dictionary.

match_param This feature is new as of Pyramid 1.2.

This param may be either a single string of the format “key=value” or a dict of key/value pairs.

This argument ensures that the view will only be called when the request has key/value pairs in
its matchdict that equal those supplied in the predicate. e.g. match_param="action=edit"
would require the ‘‘action parameter in the matchdict match the right hande side of
the expression (edit) for the view to “match” the current request.

If the match_param is a dict, every key/value pair must match for the predicate to pass.

If match_param is not supplied, the view will be invoked without consideration of the keys and
values in request.matchdict.

containment This value should be a reference to a Python class or interface that a parent object in the
context resource’s lineage must provide in order for this view to be found and called. The resources
in your resource tree must be “location-aware” to use this feature.

If containment is not supplied, the interfaces and classes in the lineage are not considered when
deciding whether or not to invoke the view callable.

See Location-Aware Resources for more information about location-awareness.

124

10.1. MAPPING A RESOURCE OR URL PATTERN TO A VIEW CALLABLE

xhr This value should be either True or False. If this value is specified and is True, the WSGI
environment must possess an HTTP_X_REQUESTED_WITH (aka X-Requested-With) header
that has the value XMLHttpRequest for the associated view callable to be found and called. This
is useful for detecting AJAX requests issued from jQuery, Prototype and other Javascript libraries.

If xhr is not specified, the HTTP_X_REQUESTED_WITH HTTP header is not taken into consid-
eration when deciding whether or not to invoke the associated view callable.

accept The value of this argument represents a match query for one or more mimetypes in the Accept
HTTP request header. If this value is specified, it must be in one of the following forms: a mimetype
match token in the form text/plain, a wildcard mimetype match token in the form text/*
or a match-all wildcard mimetype match token in the form */*. If any of the forms matches the
Accept header of the request, this predicate will be true.

If accept is not specified, the HTTP_ACCEPT HTTP header is not taken into consideration when
deciding whether or not to invoke the associated view callable.

header This value represents an HTTP header name or a header name/value pair.

If header is specified, it must be a header name or a headername:headervalue pair.

If header is specified without a value (a bare header name only, e.g. If-Modified-Since),
the view will only be invoked if the HTTP header exists with any value in the request.

If header is specified, and possesses a name/value pair (e.g. User-Agent:Mozilla/.*),
the view will only be invoked if the HTTP header exists and the HTTP header matches the value
requested. When the headervalue contains a : (colon), it will be considered a name/value
pair (e.g. User-Agent:Mozilla/.* or Host:localhost). The value portion should be a
regular expression.

Whether or not the value represents a header name or a header name/value pair, the case of the
header name is not significant.

If header is not specified, the composition, presence or absence of HTTP headers is not taken
into consideration when deciding whether or not to invoke the associated view callable.

path_info This value represents a regular expression pattern that will be tested against the
PATH_INFO WSGI environment variable to decide whether or not to call the associated view
callable. If the regex matches, this predicate will be True.

If path_info is not specified, the WSGI PATH_INFO is not taken into consideration when
deciding whether or not to invoke the associated view callable.

custom_predicates If custom_predicates is specified, it must be a sequence of references to
custom predicate callables. Use custom predicates when no set of predefined predicates do what you
need. Custom predicates can be combined with predefined predicates as necessary. Each custom
predicate callable should accept two arguments: context and request and should return either
True or False after doing arbitrary evaluation of the context resource and/or the request. If all
callables return True, the associated view callable will be considered viable for a given request.

If custom_predicates is not specified, no custom predicates are used.

125

10. VIEW CONFIGURATION

10.1.2 Adding View Configuration Using the @view_config Decorator

Using this feature tends to slows down application startup slightly, as more work is performed
at application startup to scan for view configuration declarations. For maximum startup performance,
use the view configuration method described in Adding View Configuration Using add_view() instead.

The view_config decorator can be used to associate view configuration information with a function,
method, or class that acts as a Pyramid view callable.

Here’s an example of the view_config decorator that lives within a Pyramid application module
views.py:

1 from resources import MyResource
2 from pyramid.view import view_config
3 from pyramid.response import Response
4

5 @view_config(route_name=’ok’, request_method=’POST’, permission=’read’)
6 def my_view(request):
7 return Response(’OK’)

Using this decorator as above replaces the need to add this imperative configuration stanza:

1 config.add_view(’mypackage.views.my_view’, route_name=’ok’,
2 request_method=’POST’, permission=’read’)

All arguments to view_config may be omitted. For example:

1 from pyramid.response import Response
2 from pyramid.view import view_config
3

4 @view_config()
5 def my_view(request):
6 """ My view """
7 return Response()

Such a registration as the one directly above implies that the view name will be my_view, registered with
a context argument that matches any resource type, using no permission, registered against requests
with any request method, request type, request param, route name, or containment.

The mere existence of a @view_config decorator doesn’t suffice to perform view configuration. All
that the decorator does is “annotate” the function with your configuration declarations, it doesn’t process
them. To make Pyramid process your pyramid.view.view_config declarations, you must use the
scan method of a pyramid.config.Configurator:

126

10.1. MAPPING A RESOURCE OR URL PATTERN TO A VIEW CALLABLE

1 # config is assumed to be an instance of the
2 # pyramid.config.Configurator class
3 config.scan()

Please see Declarative Configuration for detailed information about what happens when code is scanned
for configuration declarations resulting from use of decorators like view_config.

See pyramid.config for additional API arguments to the scan()method. For example, the method allows
you to supply a package argument to better control exactly which code will be scanned.

All arguments to the view_config decorator mean precisely the same thing as they would if they were
passed as arguments to the pyramid.config.Configurator.add_view() method save for the
view argument. Usage of the view_config decorator is a form of declarative configuration, while
pyramid.config.Configurator.add_view() is a form of imperative configuration. However,
they both do the same thing.

@view_config Placement

A view_config decorator can be placed in various points in your application.

If your view callable is a function, it may be used as a function decorator:

1 from pyramid.view import view_config
2 from pyramid.response import Response
3

4 @view_config(route_name=’edit’)
5 def edit(request):
6 return Response(’edited!’)

If your view callable is a class, the decorator can also be used as a class decorator in Python 2.6 and better
(Python 2.5 and below do not support class decorators). All the arguments to the decorator are the same
when applied against a class as when they are applied against a function. For example:

1 from pyramid.response import Response
2 from pyramid.view import view_config
3

4 @view_config(route_name=’hello’)
5 class MyView(object):
6 def __init__(self, request):
7 self.request = request
8

9 def __call__(self):
10 return Response(’hello’)

127

10. VIEW CONFIGURATION

You can use the view_config decorator as a simple callable to manually decorate classes in Python
2.5 and below without the decorator syntactic sugar, if you wish:

1 from pyramid.response import Response
2 from pyramid.view import view_config
3

4 class MyView(object):
5 def __init__(self, request):
6 self.request = request
7

8 def __call__(self):
9 return Response(’hello’)

10

11 my_view = view_config(route_name=’hello’)(MyView)

More than one view_config decorator can be stacked on top of any number of others. Each decorator
creates a separate view registration. For example:

1 from pyramid.view import view_config
2 from pyramid.response import Response
3

4 @view_config(route_name=’edit’)
5 @view_config(route_name=’change’)
6 def edit(request):
7 return Response(’edited!’)

This registers the same view under two different names.

The decorator can also be used against a method of a class:

1 from pyramid.response import Response
2 from pyramid.view import view_config
3

4 class MyView(object):
5 def __init__(self, request):
6 self.request = request
7

8 @view_config(route_name=’hello’)
9 def amethod(self):

10 return Response(’hello’)

When the decorator is used against a method of a class, a view is registered for the class, so the class
constructor must accept an argument list in one of two forms: either it must accept a single argument
request or it must accept two arguments, context, request.

128

10.1. MAPPING A RESOURCE OR URL PATTERN TO A VIEW CALLABLE

The method which is decorated must return a response.

Using the decorator against a particular method of a class is equivalent to using the attr parameter in a
decorator attached to the class itself. For example, the above registration implied by the decorator being
used against the amethod method could be spelled equivalently as the below:

1 from pyramid.response import Response
2 from pyramid.view import view_config
3

4 @view_config(attr=’amethod’, route_name=’hello’)
5 class MyView(object):
6 def __init__(self, request):
7 self.request = request
8

9 def amethod(self):
10 return Response(’hello’)

10.1.3 Adding View Configuration Using add_view()

The pyramid.config.Configurator.add_view() method within pyramid.config is used to
configure a view “imperatively” (without a view_config decorator). The arguments to this method
are very similar to the arguments that you provide to the view_config decorator. For example:

1 from pyramid.response import Response
2

3 def hello_world(request):
4 return Response(’hello!’)
5

6 # config is assumed to be an instance of the
7 # pyramid.config.Configurator class
8 config.add_view(hello_world, route_name=’hello’)

The first argument, view, is required. It must either be a Python object which is the view itself or a
dotted Python name to such an object. In the above example, view is the hello_world function.
All other arguments are optional. See pyramid.config.Configurator.add_view() for more
information.

When you use only add_view() to add view configurations, you don’t need to issue a scan in order for
the view configuration to take effect.

129

10. VIEW CONFIGURATION

10.1.4 Configuring View Security

If an authorization policy is active, any permission attached to a view configuration found during view
lookup will be verified. This will ensure that the currently authenticated user possesses that permission
against the context resource before the view function is actually called. Here’s an example of specifying
a permission in a view configuration using add_view():

1 # config is an instance of pyramid.config.Configurator
2

3 config.add_route(’add’, ’/add.html’, factory=’mypackage.Blog’)
4 config.add_view(’myproject.views.add_entry’, route_name=’add’,
5 permission=’add’)

When an authorization policy is enabled, this view will be protected with the add permission. The view
will not be called if the user does not possess the add permission relative to the current context. Instead
the forbidden view result will be returned to the client as per Protecting Views with Permissions.

10.1.5 NotFound Errors

It’s useful to be able to debug NotFound error responses when they occur unexpectedly due to an
application registry misconfiguration. To debug these errors, use the PYRAMID_DEBUG_NOTFOUND
environment variable or the pyramid.debug_notfound configuration file setting. Details of why a
view was not found will be printed to stderr, and the browser representation of the error will include
the same information. See Environment Variables and .ini File Settings for more information about how,
and where to set these values.

10.2 Influencing HTTP Caching

This feature is new in Pyramid 1.1.

When a non-None http_cache argument is passed to a view configuration, Pyramid will set Expires
and Cache-Control response headers in the resulting response, causing browsers to cache the re-
sponse data for some time. See http_cache in Non-Predicate Arguments for the its allowable values
and what they mean.

130

10.3. DEBUGGING VIEW CONFIGURATION

Sometimes it’s undesirable to have these headers set as the result of returning a response from a view, even
though you’d like to decorate the view with a view configuration decorator that has http_cache. Per-
haps there’s an alternate branch in your view code that returns a response that should never be cacheable,
while the “normal” branch returns something that should always be cacheable. If this is the case, set
the prevent_auto attribute of the response.cache_control object to a non-False value. For
example, the below view callable is configured with a @view_config decorator that indicates any re-
sponse from the view should be cached for 3600 seconds. However, the view itself prevents caching from
taking place unless there’s a should_cache GET or POST variable:

from pyramid.view import view_config

@view_config(http_cache=3600)
def view(request):

response = Response()
if not ’should_cache’ in request.params:

response.cache_control.prevent_auto = True
return response

Note that the http_cache machinery will overwrite or add to caching headers you set within the view
itself unless you use preserve_auto.

You can also turn of the effect of http_cache entirely for the duration of a Pyramid applica-
tion lifetime. To do so, set the PYRAMID_PREVENT_HTTP_CACHE environment variable or the
pyramid.prevent_http_cache configuration value setting to a true value. For more information,
see Preventing HTTP Caching.

Note that setting pyramid.prevent_http_cache will have no effect on caching headers that your
application code itself sets. It will only prevent caching headers that would have been set by the Pyramid
HTTP caching machinery invoked as the result of the http_cache argument to view configuration.

10.3 Debugging View Configuration

See Displaying Matching Views for a Given URL for information about how to display each of the view
callables that might match for a given URL. This can be an effective way to figure out why a particular
view callable is being called instead of the one you’d like to be called.

131

10. VIEW CONFIGURATION

132

CHAPTER

ELEVEN

STATIC ASSETS

An asset is any file contained within a Python package which is not a Python source code file. For
example, each of the following is an asset:

• a GIF image file contained within a Python package or contained within any subdirectory of a
Python package.

• a CSS file contained within a Python package or contained within any subdirectory of a Python
package.

• a JavaScript source file contained within a Python package or contained within any subdirectory of
a Python package.

• A directory within a package that does not have an __init__.py in it (if it possessed an
__init__.py it would be a package).

• a Chameleon or Mako template file contained within a Python package.

The use of assets is quite common in most web development projects. For example, when you create
a Pyramid application using one of the available scaffolds, as described in Creating the Project, the
directory representing the application contains a Python package. Within that Python package, there are
directories full of files which are static assets. For example, there’s a static directory which contains
.css, .js, and .gif files. These asset files are delivered when a user visits an application URL.

11.1 Understanding Asset Specifications

Let’s imagine you’ve created a Pyramid application that uses a Chameleon ZPT template via the
pyramid.renderers.render_to_response() API. For example, the application might ad-
dress the asset using the asset specification myapp:templates/some_template.pt using that
API within a views.py file inside a myapp package:

133

11. STATIC ASSETS

1 from pyramid.renderers import render_to_response
2 render_to_response(’myapp:templates/some_template.pt’, {}, request)

“Under the hood”, when this API is called, Pyramid attempts to make sense out of the string
myapp:templates/some_template.pt provided by the developer. This string is an asset speci-
fication. It is composed of two parts:

• The package name (myapp)

• The asset name (templates/some_template.pt), relative to the package directory.

The two parts are separated by the colon character.

Pyramid uses the Python pkg_resources API to resolve the package name and asset name to an absolute
(operating-system-specific) file name. It eventually passes this resolved absolute filesystem path to the
Chameleon templating engine, which then uses it to load, parse, and execute the template file.

There is a second form of asset specification: a relative asset specification. Instead of using an “absolute”
asset specification which includes the package name, in certain circumstances you can omit the package
name from the specification. For example, you might be able to use templates/mytemplate.pt
instead of myapp:templates/some_template.pt. Such asset specifications are usually relative
to a “current package.” The “current package” is usually the package which contains the code that uses
the asset specification. Pyramid APIs which accept relative asset specifications typically describe what
the asset is relative to in their individual documentation.

11.2 Serving Static Assets

Pyramid makes it possible to serve up static asset files from a directory on a filesystem to an application
user’s browser. Use the pyramid.config.Configurator.add_static_view() to instruct
Pyramid to serve static assets such as JavaScript and CSS files. This mechanism makes a directory of
static files available at a name relative to the application root URL, e.g. /static or as an external URL.

add_static_view() cannot serve a single file, nor can it serve a directory of static files
directly relative to the root URL of a Pyramid application. For these features, see Advanced: Serving
Static Assets Using a View Callable.

Here’s an example of a use of add_static_view() that will serve files up from the
/var/www/static directory of the computer which runs the Pyramid application as URLs beneath
the /static URL prefix.

134

11.2. SERVING STATIC ASSETS

1 # config is an instance of pyramid.config.Configurator
2 config.add_static_view(name=’static’, path=’/var/www/static’)

The name prepresents a URL prefix. In order for files that live in the path directory to be served,
a URL that requests one of them must begin with that prefix. In the example above, name is
static, and path is /var/www/static. In English, this means that you wish to serve the
files that live in /var/www/static as sub-URLs of the /static URL prefix. Therefore, the
file /var/www/static/foo.css will be returned when the user visits your application’s URL
/static/foo.css.

A static directory named at path may contain subdirectories recursively, and any subdirectories may
hold files; these will be resolved by the static view as you would expect. The Content-Type header
returned by the static view for each particular type of file is dependent upon its file extension.

By default, all files made available via add_static_view() are accessible by completely anonymous
users. Simple authorization can be required, however. To protect a set of static files using a permission, in
addition to passing the required name and path arguments, also pass the permission keyword argu-
ment to add_static_view(). The value of the permission argument represents the permission
that the user must have relative to the current context when the static view is invoked. A user will be
required to possess this permission to view any of the files represented by path of the static view. If your
static assets must be protected by a more complex authorization scheme, see Advanced: Serving Static
Assets Using a View Callable.

Here’s another example that uses an asset specification instead of an absolute path as the path ar-
gument. To convince add_static_view() to serve files up under the /static URL from the
a/b/c/static directory of the Python package named some_package, we can use a fully qualified
asset specification as the path:

1 # config is an instance of pyramid.config.Configurator
2 config.add_static_view(name=’static’, path=’some_package:a/b/c/static’)

The path provided to add_static_view()may be a fully qualified asset specification or an absolute
path.

Instead of representing a URL prefix, the name argument of a call to add_static_view() can
alternately be a URL. Each of examples we’ve seen so far have shown usage of the name argu-
ment as a URL prefix. However, when name is a URL, static assets can be served from an exter-
nal webserver. In this mode, the name is used as the URL prefix when generating a URL using
pyramid.request.Request.static_url().

For example, add_static_view() may be fed a name argument which is
http://example.com/images:

135

11. STATIC ASSETS

1 # config is an instance of pyramid.config.Configurator
2 config.add_static_view(name=’http://example.com/images’,
3 path=’mypackage:images’)

Because add_static_view() is provided with a name argument that is the URL
http://example.com/images, subsequent calls to static_url() with paths that start
with the path argument passed to add_static_view() will generate a URL something like
http://example.com/images/logo.png. The external webserver listening on example.com
must be itself configured to respond properly to such a request. The static_url() API is discussed
in more detail later in this chapter.

11.2.1 Generating Static Asset URLs

When a add_static_view() method is used to register a static asset directory, a special helper
API named pyramid.request.Request.static_url() can be used to generate the appropriate
URL for an asset that lives in one of the directories named by the static registration path attribute.

For example, let’s assume you create a set of static declarations like so:

1 config.add_static_view(name=’static1’, path=’mypackage:assets/1’)
2 config.add_static_view(name=’static2’, path=’mypackage:assets/2’)

These declarations create URL-accessible directories which have URLs that begin with /static1 and
/static2, respectively. The assets in the assets/1 directory of the mypackage package are con-
sulted when a user visits a URL which begins with /static1, and the assets in the assets/2 directory
of the mypackage package are consulted when a user visits a URL which begins with /static2.

You needn’t generate the URLs to static assets “by hand” in such a configuration. Instead, use the
static_url() API to generate them for you. For example:

1 from pyramid.chameleon_zpt import render_template_to_response
2

3 def my_view(request):
4 css_url = request.static_url(’mypackage:assets/1/foo.css’)
5 js_url = request.static_url(’mypackage:assets/2/foo.js’)
6 return render_template_to_response(’templates/my_template.pt’,
7 css_url = css_url,
8 js_url = js_url)

136

11.3. ADVANCED: SERVING STATIC ASSETS USING A VIEW CALLABLE

If the request “application URL” of the running system is http://example.com, the css_url
generated above would be: http://example.com/static1/foo.css. The js_url generated
above would be http://example.com/static2/foo.js.

One benefit of using the static_url() function rather than constructing static URLs “by hand” is that
if you need to change the name of a static URL declaration, the generated URLs will continue to resolve
properly after the rename.

URLs may also be generated by static_url() to static assets that live outside the Pyramid ap-
plication. This will happen when the add_static_view() API associated with the path fed to
static_url() is a URL instead of a view name. For example, the name argument may be
http://example.com while the the path given may be mypackage:images:

1 config.add_static_view(name=’http://example.com/images’,
2 path=’mypackage:images’)

Under such a configuration, the URL generated by static_url for assets which begin with
mypackage:images will be prefixed with http://example.com/images:

1 request.static_url(’mypackage:images/logo.png’)
2 # -> http://example.com/images/logo.png

Using static_url() in conjunction with a add_static_view() makes it possible to put static
media on a separate webserver during production (if the name argument to add_static_view()
is a URL), while keeping static media package-internal and served by the development webserver dur-
ing development (if the name argument to add_static_view() is a URL prefix). To create such
a circumstance, we suggest using the pyramid.registry.Registry.settings API in con-
junction with a setting in the application .ini file named media_location. Then set the value
of media_location to either a prefix or a URL depending on whether the application is being run
in development or in production (use a different .ini file for production than you do for development).
This is just a suggestion for a pattern; any setting name other than media_location could be used.

11.3 Advanced: Serving Static Assets Using a View Callable

For more flexibility, static assets can be served by a view callable which you register manually. For
example, if you’re using URL dispatch, you may want static assets to only be available as a fallback if no
previous route matches. Alternately, you might like to serve a particular static asset manually, because its
download requires authentication.

Note that you cannot use the static_url() API to generate URLs against assets made accessible by
registering a custom static view.

137

11. STATIC ASSETS

11.3.1 Root-Relative Custom Static View (URL Dispatch Only)

The pyramid.static.static_view helper class generates a Pyramid view callable. This view
callable can serve static assets from a directory. An instance of this class is actually used by the
add_static_view() configuration method, so its behavior is almost exactly the same once it’s con-
figured.

The following example will not work for applications that use traversal, it will only work if
you use URL dispatch exclusively. The root-relative route we’ll be registering will always be matched
before traversal takes place, subverting any views registered via add_view (at least those without a
route_name). A static_view static view cannot be made root-relative when you use traversal
unless it’s registered as a Not Found view.

To serve files within a directory located on your filesystem at /path/to/static/dir as the result of
a “catchall” route hanging from the root that exists at the end of your routing table, create an instance of
the static_view class inside a static.py file in your application root as below.

1 from pyramid.static import static
2 static_view = static_view(’/path/to/static/dir’, use_subpath=True)

For better cross-system flexibility, use an asset specification as the argument to static_view
instead of a physical absolute filesystem path, e.g. mypackage:static instead of
/path/to/mypackage/static.

Subsequently, you may wire the files that are served by this view up to be accessible as /<filename>
using a configuration method in your application’s startup code.

1 # .. every other add_route declaration should come
2 # before this one, as it will, by default, catch all requests
3

4 config.add_route(’catchall_static’, ’/*subpath’)
5 config.add_view(’myapp.static.static_view’, route_name=’catchall_static’)

The special name *subpath above is used by the static_view view callable to signify the path of
the file relative to the directory you’re serving.

138

11.4. OVERRIDING ASSETS

11.3.2 Registering A View Callable to Serve a “Static” Asset

You can register a simple view callable to serve a single static asset. To do so, do things “by hand”. First
define the view callable.

1 import os
2 from pyramid.response import Response
3

4 def favicon_view(request):
5 here = os.path.dirname(__file__)
6 icon = open(os.path.join(here, ’static’, ’favicon.ico’))
7 return Response(content_type=’image/x-icon’, app_iter=icon)

The above bit of code within favicon_view computes “here”, which is a path relative to the Python
file in which the function is defined. It then uses the Python open function to obtain a file handle to a
file within “here” named static, and returns a response using the open the file handle as the response’s
app_iter. It makes sure to set the right content_type too.

You might register such a view via configuration as a view callable that should be called as the result of a
traversal:

1 config.add_view(’myapp.views.favicon_view’, name=’favicon.ico’)

Or you might register it to be the view callable for a particular route:

1 config.add_route(’favicon’, ’/favicon.ico’)
2 config.add_view(’myapp.views.favicon_view’, route_name=’favicon’)

Because this is a simple view callable, it can be protected with a permission or can be configured to
respond under different circumstances using view predicate arguments.

11.4 Overriding Assets

It can often be useful to override specific assets from “outside” a given Pyramid application. For example,
you may wish to reuse an existing Pyramid application more or less unchanged. However, some specific
template file owned by the application might have inappropriate HTML, or some static asset (such as a
logo file or some CSS file) might not be appropriate. You could just fork the application entirely, but
it’s often more convenient to just override the assets that are inappropriate and reuse the application “as
is”. This is particularly true when you reuse some “core” application over and over again for some set of

139

11. STATIC ASSETS

customers (such as a CMS application, or some bug tracking application), and you want to make arbitrary
visual modifications to a particular application deployment without forking the underlying code.

To this end, Pyramid contains a feature that makes it possible to “override” one asset with
one or more other assets. In support of this feature, a Configurator API exists named
pyramid.config.Configurator.override_asset(). This API allows you to override the
following kinds of assets defined in any Python package:

• Individual Chameleon templates.

• A directory containing multiple Chameleon templates.

• Individual static files served up by an instance of the pyramid.static.static_view helper
class.

• A directory of static files served up by an instance of the pyramid.static.static_view
helper class.

• Any other asset (or set of assets) addressed by code that uses the setuptools pkg_resources API.

11.4.1 The override_asset API

An individual call to override_asset() can override a single asset. For example:

1 config.override_asset(
2 to_override=’some.package:templates/mytemplate.pt’,
3 override_with=’another.package:othertemplates/anothertemplate.pt’)

The string value passed to both to_override and override_with sent to the override_asset
API is called an asset specification. The colon separator in a specification separates the package name
from the asset name. The colon and the following asset name are optional. If they are not specified,
the override attempts to resolve every lookup into a package from the directory of another package. For
example:

1 config.override_asset(to_override=’some.package’,
2 override_with=’another.package’)

Individual subdirectories within a package can also be overridden:

140

11.4. OVERRIDING ASSETS

1 config.override_asset(to_override=’some.package:templates/’,
2 override_with=’another.package:othertemplates/’)

If you wish to override a directory with another directory, you must make sure to attach the slash to the
end of both the to_override specification and the override_with specification. If you fail to
attach a slash to the end of a specification that points to a directory, you will get unexpected results.

You cannot override a directory specification with a file specification, and vice versa: a startup error will
occur if you try. You cannot override an asset with itself: a startup error will occur if you try.

Only individual package assets may be overridden. Overrides will not traverse through subpack-
ages within an overridden package. This means that if you want to override assets for both
some.package:templates, and some.package.views:templates, you will need to reg-
ister two overrides.

The package name in a specification may start with a dot, meaning that the package is relative to
the package in which the configuration construction file resides (or the package argument to the
Configurator class construction). For example:

1 config.override_asset(to_override=’.subpackage:templates/’,
2 override_with=’another.package:templates/’)

Multiple calls to override_asset which name a shared to_override but a different
override_with specification can be “stacked” to form a search path. The first asset that exists in
the search path will be used; if no asset exists in the override path, the original asset is used.

Asset overrides can actually override assets other than templates and static files.
Any software which uses the pkg_resources.get_resource_filename(),
pkg_resources.get_resource_stream() or pkg_resources.get_resource_string()
APIs will obtain an overridden file when an override is used.

141

11. STATIC ASSETS

142

CHAPTER

TWELVE

REQUEST AND RESPONSE
OBJECTS

This chapter is adapted from a portion of the WebOb documentation, originally written by Ian
Bicking.

Pyramid uses the WebOb package as a basis for its request and response object implementations. The re-
quest object that is passed to a Pyramid view is an instance of the pyramid.request.Request class,
which is a subclass of webob.Request. The response returned from a Pyramid view renderer is an in-
stance of the pyramid.response.Response class, which is a subclass of the webob.Response
class. Users can also return an instance of pyramid.response.Response directly from a view as
necessary.

WebOb is a project separate from Pyramid with a separate set of authors and a fully separate set of
documentation. Pyramid adds some functionality to the standard WebOb request, which is documented
in the pyramid.request API documentation.

WebOb provides objects for HTTP requests and responses. Specifically it does this by wrapping the
WSGI request environment and response status, header list, and app_iter (body) values.

WebOb request and response objects provide many conveniences for parsing WSGI requests and forming
WSGI responses. WebOb is a nice way to represent “raw” WSGI requests and responses; however, we
won’t cover that use case in this document, as users of Pyramid don’t typically need to use the WSGI-
related features of WebOb directly. The reference documentation shows many examples of creating re-
quests and using response objects in this manner, however.

143

http://docs.webob.org/en/latest/index.html
http://docs.webob.org/en/latest/index.html
http://wsgi.org
http://docs.webob.org/en/latest/reference.html

12. REQUEST AND RESPONSE OBJECTS

12.1 Request

The request object is a wrapper around the WSGI environ dictionary. This dictionary contains keys for
each header, keys that describe the request (including the path and query string), a file-like object for the
request body, and a variety of custom keys. You can always access the environ with req.environ.

Some of the most important/interesting attributes of a request object:

req.method: The request method, e.g., ’GET’, ’POST’

req.GET: A multidict with all the variables in the query string.

req.POST: A multidict with all the variables in the request body. This only has variables if the request
was a POST and it is a form submission.

req.params: A multidict with a combination of everything in req.GET and req.POST.

req.body: The contents of the body of the request. This contains the entire request body as a string.
This is useful when the request is a POST that is not a form submission, or a request like a PUT.
You can also get req.body_file for a file-like object.

req.json_body The JSON-decoded contents of the body of the request. See Dealing With A JSON-
Encoded Request Body.

req.cookies: A simple dictionary of all the cookies.

req.headers: A dictionary of all the headers. This dictionary is case-insensitive.

req.urlvars and req.urlargs: req.urlvars are the keyword parameters associated with the
request URL. req.urlargs are the positional parameters. These are set by products like Routes
and Selector.

Also, for standard HTTP request headers there are usually attributes, for instance:
req.accept_language, req.content_length, req.user_agent, as an example. These
properties expose the parsed form of each header, for whatever parsing makes sense. For instance,
req.if_modified_since returns a datetime object (or None if the header is was not provided).

Full API documentation for the Pyramid request object is available in pyramid.request.

144

http://www.python.org/dev/peps/pep-0333/#environ-variables
http://routes.groovie.org/
http://lukearno.com/projects/selector/
http://python.org/doc/current/lib/datetime-datetime.html

12.1. REQUEST

12.1.1 Special Attributes Added to the Request by Pyramid

In addition to the standard WebOb attributes, Pyramid adds special attributes to every re-
quest: context, registry, root, subpath, traversed, view_name, virtual_root,
virtual_root_path, session, and tmpl_context, matchdict, and matched_route.
These attributes are documented further within the pyramid.request.Request API documenta-
tion.

12.1.2 URLs

In addition to these attributes, there are several ways to get the URL of the request. I’ll show various values
for an example URL http://localhost/app/blog?id=10, where the application is mounted at
http://localhost/app.

req.url: The full request URL, with query string, e.g., http://localhost/app/blog?id=10

req.host: The host information in the URL, e.g., localhost

req.host_url: The URL with the host, e.g., http://localhost

req.application_url: The URL of the application (just the SCRIPT_NAME portion of the path,
not PATH_INFO). E.g., http://localhost/app

req.path_url: The URL of the application including the PATH_INFO. e.g.,
http://localhost/app/blog

req.path: The URL including PATH_INFO without the host or scheme. e.g., /app/blog

req.path_qs: The URL including PATH_INFO and the query string. e.g, /app/blog?id=10

req.query_string: The query string in the URL, e.g., id=10

req.relative_url(url, to_application=False): Gives a URL, relative to the current
URL. If to_application is True, then resolves it relative to req.application_url.

145

12. REQUEST AND RESPONSE OBJECTS

12.1.3 Methods

There are methods of request objects documented in pyramid.request.Request but you’ll find
that you won’t use very many of them. Here are a couple that might be useful:

Request.blank(base_url): Creates a new request with blank information, based at the given
URL. This can be useful for subrequests and artificial requests. You can also use req.copy()
to copy an existing request, or for subrequests req.copy_get() which copies the request but
always turns it into a GET (which is safer to share for subrequests).

req.get_response(wsgi_application): This method calls the given WSGI application with
this request, and returns a pyramid.response.Response object. You can also use this for
subrequests, or testing.

12.1.4 Unicode

Many of the properties in the request object will return unicode values if the request encod-
ing/charset is provided. The client can indicate the charset with something like Content-Type:
application/x-www-form-urlencoded; charset=utf8, but browsers seldom set
this. You can set the charset with req.charset = ’utf8’, or during instantiation with
Request(environ, charset=’utf8’). If you subclass Request you can also set charset
as a class-level attribute.

If it is set, then req.POST, req.GET, req.params, and req.cookieswill contain unicode strings.
Each has a corresponding req.str_* (e.g., req.str_POST) that is always a str, and never unicode.

12.1.5 Multidict

Several attributes of a WebOb request are “multidict”; structures (such as request.GET,
request.POST, and request.params). A multidict is a dictionary where a key can have mul-
tiple values. The quintessential example is a query string like ?pref=red&pref=blue; the pref
variable has two values: red and blue.

In a multidict, when you do request.GET[’pref’] you’ll get back only ’blue’ (the last value of
pref). Sometimes returning a string, and sometimes returning a list, is the cause of frequent exceptions.
If you want all the values back, use request.GET.getall(’pref’). If you want to be sure there
is one and only one value, use request.GET.getone(’pref’), which will raise an exception if
there is zero or more than one value for pref.

When you use operations like request.GET.items() you’ll get back something like
[(’pref’, ’red’), (’pref’, ’blue’)]. All the key/value pairs will show up. Similarly
request.GET.keys() returns [’pref’, ’pref’]. Multidict is a view on a list of tuples; all the
keys are ordered, and all the values are ordered.

API documentation for a multidict exists as pyramid.interfaces.IMultiDict.

146

12.1. REQUEST

12.1.6 Dealing With A JSON-Encoded Request Body

this feature is new as of Pyramid 1.1.

pyramid.request.Request.json_body is a property that returns a JSON -decoded representa-
tion of the request body. If the request does not have a body, or the body is not a properly JSON-encoded
value, an exception will be raised when this attribute is accessed.

This attribute is useful when you invoke a Pyramid view callable via e.g. jQuery’s $.ajax function,
which has the potential to send a request with a JSON-encoded body.

Using request.json_body is equivalent to:

from json import loads
loads(request.body, encoding=request.charset)

Here’s how to construct an AJAX request in Javascript using jQuery that allows you to use the
request.json_body attribute when the request is sent to a Pyramid application:

jQuery.ajax({type:’POST’,
url: ’http://localhost:6543/’, // the pyramid server
data: JSON.stringify({’a’:1}),
contentType: ’application/json; charset=utf-8’});

When such a request reaches a view in your application, the request.json_body attribute will be
available in the view callable body.

@view_config(renderer=’string’)
def aview(request):

print request.json_body
return ’OK’

For the above view, printed to the console will be:

{u’a’: 1}

For bonus points, here’s a bit of client-side code that will produce a request that has a body suitable for
reading via request.json_body using Python’s urllib2 instead of a Javascript AJAX request:

147

12. REQUEST AND RESPONSE OBJECTS

import urllib2
import json

json_payload = json.dumps({’a’:1})
headers = {’Content-Type’:’application/json; charset=utf-8’}
req = urllib2.Request(’http://localhost:6543/’, json_payload, headers)
resp = urllib2.urlopen(req)

12.1.7 Cleaning Up After a Request

Sometimes it’s required that some cleanup be performed at the end of a request when a database connec-
tion is involved.

For example, let’s say you have a mypackage Pyramid application package that uses SQLAlchemy, and
you’d like the current SQLAlchemy database session to be removed after each request. Put the following
in the mypackage.__init__ module:

1 from mypackage.models import DBSession
2

3 from pyramid.events import subscriber
4 from pyramid.events import NewRequest
5

6 def cleanup_callback(request):
7 DBSession.remove()
8

9 @subscriber(NewRequest)
10 def add_cleanup_callback(event):
11 event.request.add_finished_callback(cleanup_callback)

Registering the cleanup_callback finished callback at the start of a request (by causing the
add_cleanup_callback to receive a pyramid.events.NewRequest event at the start of
each request) will cause the DBSession to be removed whenever request processing has ended. Note
that in the example above, for the pyramid.events.subscriber decorator to “work”, the
pyramid.config.Configurator.scan() method must be called against your mypackage
package during application initialization.

This is only an example. In particular, it is not necessary to cause DBSession.remove to be
called in an application generated from any Pyramid scaffold, because these all use the pyramid_tm
package. The cleanup done by DBSession.remove is unnecessary when pyramid_tm middle-
ware is configured into the application.

148

12.2. RESPONSE

12.1.8 More Details

More detail about the request object API is available in:

• The pyramid.request.Request API documentation.

• The WebOb documentation. All methods and attributes of a webob.Request documented within
the WebOb documentation will work with request objects created by Pyramid.

12.2 Response

The Pyramid response object can be imported as pyramid.response.Response. This class is a
subclass of the webob.Response class. The subclass does not add or change any functionality, so the
WebOb Response documentation will be completely relevant for this class as well.

A response object has three fundamental parts:

response.status: The response code plus reason message, like ’200 OK’. To set the code without
a message, use status_int, i.e.: response.status_int = 200.

response.headerlist: A list of all the headers, like [(’Content-Type’,
’text/html’)]. There’s a case-insensitive multidict in response.headers that also
allows you to access these same headers.

response.app_iter: An iterable (such as a list or generator) that will produce the content of the
response. This is also accessible as response.body (a string), response.unicode_body
(a unicode object, informed by response.charset), and response.body_file (a file-like
object; writing to it appends to app_iter).

Everything else in the object typically derives from this underlying state. Here are some highlights:

response.content_type The content type not including the charset parameter. Typical use:
response.content_type = ’text/html’.

response.charset: The charset parameter of the content-type, it also informs encoding in
response.unicode_body. response.content_type_params is a dictionary of all the
parameters.

response.set_cookie(key, value, max_age=None, path=’/’, ...): Set a cookie.
The keyword arguments control the various cookie parameters. The max_age argument is the
length for the cookie to live in seconds (you may also use a timedelta object). The Expires key
will also be set based on the value of max_age.

149

http://docs.webob.org/en/latest/index.html

12. REQUEST AND RESPONSE OBJECTS

response.delete_cookie(key, path=’/’, domain=None): Delete a cookie from the
client. This sets max_age to 0 and the cookie value to ”.

response.cache_expires(seconds=0): This makes this response cacheable for the given
number of seconds, or if seconds is 0 then the response is uncacheable (this also sets the
Expires header).

response(environ, start_response): The response object is a WSGI application. As an
application, it acts according to how you create it. It can do conditional responses if you pass
conditional_response=True when instantiating (or set that attribute later). It can also do
HEAD and Range requests.

12.2.1 Headers

Like the request, most HTTP response headers are available as properties. These are parsed, so you can
do things like response.last_modified = os.path.getmtime(filename).

The details are available in the extracted Response documentation.

12.2.2 Instantiating the Response

Of course most of the time you just want to make a response. Generally any attribute of the response can
be passed in as a keyword argument to the class; e.g.:

1 from pyramid.response import Response
2 response = Response(body=’hello world!’, content_type=’text/plain’)

The status defaults to ’200 OK’. The content_type does not default to anything, though if you sub-
class pyramid.response.Response and set default_content_type you can override this
behavior.

150

http://docs.webob.org/en/latest/modules/webob.html#headers

12.2. RESPONSE

12.2.3 Exception Responses

To facilitate error responses like 404 Not Found, the module pyramid.httpexceptions con-
tains classes for each kind of error response. These include boring, but appropriate error bodies.
The exceptions exposed by this module, when used under Pyramid, should be imported from the
pyramid.httpexceptions module. This import location contains subclasses and replacements that
mirror those in the webob.exc module.

Each class is named pyramid.httpexceptions.HTTP*, where * is the reason for the error. For
instance, pyramid.httpexceptions.HTTPNotFound subclasses pyramid.Response, so you
can manipulate the instances in the same way. A typical example is:

1 from pyramid.httpexceptions import HTTPNotFound
2 from pyramid.httpexceptions import HTTPMovedPermanently
3

4 response = HTTPNotFound(’There is no such resource’)
5 # or:
6 response = HTTPMovedPermanently(location=new_url)

12.2.4 More Details

More details about the response object API are available in the pyramid.response documentation.
More details about exception responses are in the pyramid.httpexceptions API documentation.
The WebOb documentation is also useful.

151

http://docs.webob.org/en/latest/index.html

12. REQUEST AND RESPONSE OBJECTS

152

CHAPTER

THIRTEEN

SESSIONS

A session is a namespace which is valid for some period of continual activity that can be used to represent
a user’s interaction with a web application.

This chapter describes how to configure sessions, what session implementations Pyramid provides out of
the box, how to store and retrieve data from sessions, and two session-specific features: flash messages,
and cross-site request forgery attack prevention.

13.1 Using The Default Session Factory

In order to use sessions, you must set up a session factory during your Pyramid configuration.

A very basic, insecure sample session factory implementation is provided in the Pyramid core. It uses a
cookie to store session information. This implementation has the following limitation:

• The session information in the cookies used by this implementation is not encrypted, so it can be
viewed by anyone with access to the cookie storage of the user’s browser or anyone with access to
the network along which the cookie travels.

• The maximum number of bytes that are storable in a serialized representation of the session is fewer
than 4000. This is suitable only for very small data sets.

It is digitally signed, however, and thus its data cannot easily be tampered with.

You can configure this session factory in your Pyramid application by using the session_factory
argument to the Configurator class:

153

13. SESSIONS

1 from pyramid.session import UnencryptedCookieSessionFactoryConfig
2 my_session_factory = UnencryptedCookieSessionFactoryConfig(’itsaseekreet’)
3

4 from pyramid.config import Configurator
5 config = Configurator(session_factory = my_session_factory)

Note the very long, very explicit name for UnencryptedCookieSessionFactoryConfig.
It’s trying to tell you that this implementation is, by default, unencrypted. You should not use it when
you keep sensitive information in the session object, as the information can be easily read by both
users of your application and third parties who have access to your users’ network traffic. Use a
different session factory implementation (preferably one which keeps session data on the server) for
anything but the most basic of applications where “session security doesn’t matter”.

13.2 Using a Session Object

Once a session factory has been configured for your application, you can access session objects provided
by the session factory via the session attribute of any request object. For example:

1 from pyramid.response import Response
2

3 def myview(request):
4 session = request.session
5 if ’abc’ in session:
6 session[’fred’] = ’yes’
7 session[’abc’] = ’123’
8 if ’fred’ in session:
9 return Response(’Fred was in the session’)

10 else:
11 return Response(’Fred was not in the session’)

You can use a session much like a Python dictionary. It supports all dictionary methods, along with some
extra attributes, and methods.

Extra attributes:

created An integer timestamp indicating the time that this session was created.

new A boolean. If new is True, this session is new. Otherwise, it has been constituted from data that was
already serialized.

154

13.3. USING ALTERNATE SESSION FACTORIES

Extra methods:

changed() Call this when you mutate a mutable value in the session namespace. See the gotchas
below for details on when, and why you should call this.

invalidate() Call this when you want to invalidate the session (dump all data, and – perhaps – set a
clearing cookie).

The formal definition of the methods and attributes supported by the session object are in the
pyramid.interfaces.ISession documentation.

Some gotchas:

• Keys and values of session data must be pickleable. This means, typically, that they are instances
of basic types of objects, such as strings, lists, dictionaries, tuples, integers, etc. If you place an
object in a session data key or value that is not pickleable, an error will be raised when the session
is serialized.

• If you place a mutable value (for example, a list or a dictionary) in a session object, and you
subsequently mutate that value, you must call the changed() method of the session object. In
this case, the session has no way to know that is was modified. However, when you modify a session
object directly, such as setting a value (i.e., __setitem__), or removing a key (e.g., del or pop),
the session will automatically know that it needs to re-serialize its data, thus calling changed()
is unnecessary. There is no harm in calling changed() in either case, so when in doubt, call it
after you’ve changed sessioning data.

13.3 Using Alternate Session Factories

At the time of this writing, exactly one alternate session factory implementation exists, named
pyramid_beaker. This is a session factory that uses the Beaker library as a backend. Beaker
has support for file-based sessions, database based sessions, and encrypted cookie-based sessions. See
http://github.com/Pylons/pyramid_beaker for more information about pyramid_beaker.

13.4 Creating Your Own Session Factory

If none of the default or otherwise available sessioning implementations for Pyramid suit you, you may
create your own session object by implementing a session factory. Your session factory should return a
session. The interfaces for both types are available in pyramid.interfaces.ISessionFactory
and pyramid.interfaces.ISession. You might use the cookie implementation in the
pyramid.session module as inspiration.

155

http://beaker.groovie.org/
http://github.com/Pylons/pyramid_beaker

13. SESSIONS

13.5 Flash Messages

“Flash messages” are simply a queue of message strings stored in the session. To use flash messaging,
you must enable a session factory as described in Using The Default Session Factory or Using Alternate
Session Factories.

Flash messaging has two main uses: to display a status message only once to the user after performing an
internal redirect, and to allow generic code to log messages for single-time display without having direct
access to an HTML template. The user interface consists of a number of methods of the session object.

13.5.1 Using the session.flash Method

To add a message to a flash message queue, use a session object’s flash() method:

request.session.flash(’mymessage’)

The flash() method appends a message to a flash queue, creating the queue if necessary.

flash() accepts three arguments:

flash(message, queue=’‘, allow_duplicate=True)

The message argument is required. It represents a message you wish to later display to a user. It is
usually a string but the message you provide is not modified in any way.

The queue argument allows you to choose a queue to which to append the message you provide. This
can be used to push different kinds of messages into flash storage for later display in different places on
a page. You can pass any name for your queue, but it must be a string. Each queue is independent, and
can be popped by pop_flash() or examined via peek_flash() separately. queue defaults to the
empty string. The empty string represents the default flash message queue.

request.session.flash(msg, ’myappsqueue’)

The allow_duplicate argument defaults to True. If this is False, and you attempt to add a
message value which is already present in the queue, it will not be added.

156

13.5. FLASH MESSAGES

13.5.2 Using the session.pop_flash Method

Once one or more messages have been added to a flash queue by the session.flash() API, the
session.pop_flash() API can be used to pop an entire queue and return it for use.

To pop a particular queue of messages from the flash object, use the session object’s pop_flash()
method. This returns a list of the messages that were added to the flash queue, and empties the queue.

pop_flash(queue=’‘)

1 >>> request.session.flash(’info message’)
2 >>> request.session.pop_flash()
3 [’info message’]

Calling session.pop_flash() again like above without a corresponding call to
session.flash() will return an empty list, because the queue has already been popped.

1 >>> request.session.flash(’info message’)
2 >>> request.session.pop_flash()
3 [’info message’]
4 >>> request.session.pop_flash()
5 []

13.5.3 Using the session.peek_flash Method

Once one or more messages has been added to a flash queue by the session.flash()
API, the session.peek_flash() API can be used to “peek” at that queue. Unlike
session.pop_flash(), the queue is not popped from flash storage.

peek_flash(queue=’‘)

1 >>> request.session.flash(’info message’)
2 >>> request.session.peek_flash()
3 [’info message’]
4 >>> request.session.peek_flash()
5 [’info message’]
6 >>> request.session.pop_flash()
7 [’info message’]
8 >>> request.session.peek_flash()
9 []

157

13. SESSIONS

13.6 Preventing Cross-Site Request Forgery Attacks

Cross-site request forgery attacks are a phenomenon whereby a user with an identity on your website
might click on a URL or button on another website which secretly redirects the user to your application
to perform some command that requires elevated privileges.

You can avoid most of these attacks by making sure that the correct CSRF token has been set in an Pyramid
session object before performing any actions in code which requires elevated privileges that is invoked
via a form post. To use CSRF token support, you must enable a session factory as described in Using The
Default Session Factory or Using Alternate Session Factories.

13.6.1 Using the session.get_csrf_token Method

To get the current CSRF token from the session, use the session.get_csrf_token() method.

token = request.session.get_csrf_token()

The session.get_csrf_token() method accepts no arguments. It returns a CSRF token string.
If session.get_csrf_token() or session.new_csrf_token() was invoked previously for
this session, the existing token will be returned. If no CSRF token previously existed for this session, a
new token will be will be set into the session and returned. The newly created token will be opaque and
randomized.

You can use the returned token as the value of a hidden field in a form that posts to a method that
requires elevated privileges. The handler for the form post should use session.get_csrf_token()
again to obtain the current CSRF token related to the user from the session, and compare it to the value
of the hidden form field. For example, if your form rendering included the CSRF token obtained via
session.get_csrf_token() as a hidden input field named csrf_token:

1 token = request.session.get_csrf_token()
2 if token != request.POST[’csrf_token’]:
3 raise ValueError(’CSRF token did not match’)

13.6.2 Using the session.new_csrf_token Method

To explicitly add a new CSRF token to the session, use the session.new_csrf_token() method.
This differs only from session.get_csrf_token() inasmuch as it clears any existing CSRF token,
creates a new CSRF token, sets the token into the session, and returns the token.

158

http://en.wikipedia.org/wiki/Cross-site_request_forgery

13.6. PREVENTING CROSS-SITE REQUEST FORGERY ATTACKS

token = request.session.new_csrf_token()

159

13. SESSIONS

160

CHAPTER

FOURTEEN

USING EVENTS

An event is an object broadcast by the Pyramid framework at interesting points during the lifetime of an
application. You don’t need to use events in order to create most Pyramid applications, but they can be
useful when you want to perform slightly advanced operations. For example, subscribing to an event can
allow you to run some code as the result of every new request.

Events in Pyramid are always broadcast by the framework. However, they only become useful when you
register a subscriber. A subscriber is a function that accepts a single argument named event:

1 def mysubscriber(event):
2 print event

The above is a subscriber that simply prints the event to the console when it’s called.

The mere existence of a subscriber function, however, is not sufficient to arrange for
it to be called. To arrange for the subscriber to be called, you’ll need to use the
pyramid.config.Configurator.add_subscriber() method or you’ll need to use the
pyramid.events.subscriber() decorator to decorate a function found via a scan.

14.1 Configuring an Event Listener Imperatively

You can imperatively configure a subscriber function to be called for some event type via the
add_subscriber() method (see also Configurator):

161

14. USING EVENTS

1 from pyramid.events import NewRequest
2

3 from subscribers import mysubscriber
4

5 # "config" below is assumed to be an instance of a
6 # pyramid.config.Configurator object
7

8 config.add_subscriber(mysubscriber, NewRequest)

The first argument to add_subscriber() is the subscriber function (or a dotted Python name which
refers to a subscriber callable); the second argument is the event type.

14.2 Configuring an Event Listener Using a Decorator

You can configure a subscriber function to be called for some event type via the
pyramid.events.subscriber() function.

1 from pyramid.events import NewRequest
2 from pyramid.events import subscriber
3

4 @subscriber(NewRequest)
5 def mysubscriber(event):
6 event.request.foo = 1

When the subscriber() decorator is used a scan must be performed against the package containing
the decorated function for the decorator to have any effect.

Either of the above registration examples implies that every time the Pyramid framework emits an event
object that supplies an pyramid.events.NewRequest interface, the mysubscriber function
will be called with an event object.

As you can see, a subscription is made in terms of a class (such as
pyramid.events.NewResponse). The event object sent to a subscriber will always be an
object that possesses an interface. For pyramid.events.NewResponse, that interface is
pyramid.interfaces.INewResponse. The interface documentation provides information about
available attributes and methods of the event objects.

The return value of a subscriber function is ignored. Subscribers to the same event type are not guaranteed
to be called in any particular order relative to each other.

All the concrete Pyramid event types are documented in the pyramid.events API documentation.

162

14.3. AN EXAMPLE

14.3 An Example

If you create event listener functions in a subscribers.py file in your application like so:

1 def handle_new_request(event):
2 print ’request’, event.request
3

4 def handle_new_response(event):
5 print ’response’, event.response

You may configure these functions to be called at the appropriate times by adding the following code to
your application’s configuration startup:

1 # config is an instance of pyramid.config.Configurator
2

3 config.add_subscriber(’myproject.subscribers.handle_new_request’,
4 ’pyramid.events.NewRequest’)
5 config.add_subscriber(’myproject.subscribers.handle_new_response’,
6 ’pyramid.events.NewResponse’)

Either mechanism causes the functions in subscribers.py to be registered as event subscribers. Un-
der this configuration, when the application is run, each time a new request or response is detected, a
message will be printed to the console.

Each of our subscriber functions accepts an event object and prints an attribute of the event object. This
begs the question: how can we know which attributes a particular event has?

We know that pyramid.events.NewRequest event objects have a request attribute, which is
a request object, because the interface defined at pyramid.interfaces.INewRequest says it
must. Likewise, we know that pyramid.interfaces.NewResponse events have a response
attribute, which is a response object constructed by your application, because the interface defined at
pyramid.interfaces.INewResponse says it must (pyramid.events.NewResponse ob-
jects also have a request).

163

14. USING EVENTS

164

CHAPTER

FIFTEEN

ENVIRONMENT VARIABLES AND
.INI FILE SETTINGS

Pyramid behavior can be configured through a combination of operating system environment variables
and .ini configuration file application section settings. The meaning of the environment variables and
the configuration file settings overlap.

Where a configuration file setting exists with the same meaning as an environment variable, and
both are present at application startup time, the environment variable setting takes precedence.

The term “configuration file setting name” refers to a key in the .ini configuration for your application.
The configuration file setting names documented in this chapter are reserved for Pyramid use. You should
not use them to indicate application-specific configuration settings.

15.1 Reloading Templates

When this value is true, templates are automatically reloaded whenever they are modified without restart-
ing the application, so you can see changes to templates take effect immediately during development.
This flag is meaningful to Chameleon and Mako templates, as well as most third-party template rendering
extensions.

Environment Variable Name Config File Setting Name
PYRAMID_RELOAD_TEMPLATES

pyramid.reload_templates or
reload_templates

165

15. ENVIRONMENT VARIABLES AND .INI FILE SETTINGS

15.2 Reloading Assets

Don’t cache any asset file data when this value is true. See also Overriding Assets.

Environment Variable Name Config File Setting Name
PYRAMID_RELOAD_ASSETS pyramid.reload_assets or reload_assets

For backwards compatibility purposes, aliases can be used for configurating asset reloading:
PYRAMID_RELOAD_RESOURCES (envvar) and pyramid.reload_resources (config file).

15.3 Debugging Authorization

Print view authorization failure and success information to stderr when this value is true. See also Debug-
ging View Authorization Failures.

Environment Variable Name Config File Setting Name
PYRAMID_DEBUG_AUTHORIZATIONpyramid.debug_authorization or

debug_authorization

15.4 Debugging Not Found Errors

Print view-related NotFound debug messages to stderr when this value is true. See also NotFound
Errors.

Environment Variable Name Config File Setting Name
PYRAMID_DEBUG_NOTFOUND pyramid.debug_notfound or debug_notfound

15.5 Debugging Route Matching

Print debugging messages related to url dispatch route matching when this value is true. See also Debug-
ging Route Matching.

Environment Variable Name Config File Setting Name
PYRAMID_DEBUG_ROUTEMATCH pyramid.debug_routematch or debug_routematch

166

15.6. PREVENTING HTTP CACHING

15.6 Preventing HTTP Caching

Prevent the http_cache view configuration argument from having any effect globally in this pro-
cess when this value is true. No http caching-related response headers will be set by the Pyramid
http_cache view configuration feature when this is true. See also Influencing HTTP Caching.

Environment Variable Name Config File Setting Name
PYRAMID_PREVENT_HTTP_CACHEpyramid.prevent_http_cache or

prevent_http_cache

15.7 Debugging All

Turns on all debug* settings.

Environment Variable Name Config File Setting Name
PYRAMID_DEBUG_ALL pyramid.debug_all or debug_all

15.8 Reloading All

Turns on all reload* settings.

Environment Variable Name Config File Setting Name
PYRAMID_RELOAD_ALL pyramid.reload_all or reload_all

15.9 Default Locale Name

The value supplied here is used as the default locale name when a locale negotiator is not registered. See
also Localization-Related Deployment Settings.

Environment Variable Name Config File Setting Name
PYRAMID_DEFAULT_LOCALE_NAMEpyramid.default_locale_name or

default_locale_name

167

15. ENVIRONMENT VARIABLES AND .INI FILE SETTINGS

15.10 Including Packages

pyramid.includes instructs your application to include other packages. Using the setting is equiva-
lent to using the pyramid.config.Configurator.include() method.

Config File Setting Name
pyramid.includes

The value supplied as pyramid.includes should be a sequence. The sequence can take several
different forms.

1. It can be a string.

If it is a string, the package names can be separated by spaces:

package1 package2 package3

The package names can also be separated by carriage returns::

package1
package2
package3

2. It can be a Python list, where the values are strings:

[’package1’, ’package2’, ’package3’]

Each value in the sequence should be a dotted Python name.

15.10.1 pyramid.includes vs. pyramid.config.Configurator.include()

Two methods exist for including packages: pyramid.includes and
pyramid.config.Configurator.include(). This section explains their equivalence.

Using PasteDeploy

Using the following pyramid.includes setting in the PasteDeploy .ini file in your application:

168

15.10. INCLUDING PACKAGES

[app:main]
pyramid.includes = pyramid_debugtoolbar

pyramid_tm

Is equivalent to using the following statements in your configuration code:

1 from pyramid.config import Configurator
2

3 def main(global_config, **settings):
4 config = Configurator(settings=settings)
5 # ...
6 config.include(’pyramid_debugtoolbar’)
7 config.include(’pyramid_tm’)
8 # ...

It is fine to use both or either form.

Plain Python

Using the following pyramid.includes setting in your plain-Python Pyramid application:

1 from pyramid.config import Configurator
2

3 if __name__ == ’__main__’:
4 settings = {’pyramid.includes’:’pyramid_debugtoolbar pyramid_tm’}
5 config = Configurator(settings=settings)

Is equivalent to using the following statements in your configuration code:

1 from pyramid.config import Configurator
2

3 if __name__ == ’__main__’:
4 settings = {}
5 config = Configurator(settings=settings)
6 config.include(’pyramid_debugtoolbar’)
7 config.include(’pyramid_tm’)

It is fine to use both or either form.

169

15. ENVIRONMENT VARIABLES AND .INI FILE SETTINGS

15.11 Explicit Tween Configuration

This value allows you to perform explicit tween ordering in your configuration. Tweens are bits of code
used by add-on authors to extend Pyramid. They form a chain, and require ordering.

Ideally, you won’t need to use the pyramid.tweens setting at all. Tweens are generally ordered
and included “implicitly” when an add-on package which registers a tween is “included”. Packages
are included when you name a pyramid.includes setting in your configuration or when you call
pyramid.config.Configuration.include().

Authors of included add-ons provide “implicit” tween configuration ordering hints to Pyramid when their
packages are included. However, the implicit tween ordering is only best-effort. Pyramid will attempt
to provide an implicit order of tweens as best it can using hints provided by add-on authors, but because
it’s only best-effort, if very precise tween ordering is required, the only surefire way to get it is to use an
explicit tween order. You may be required to inspect your tween ordering (see Displaying “Tweens”) and
add a pyramid.tweens configuration value at the behest of an add-on author.

Config File Setting Name
pyramid.tweens

The value supplied as pyramid.tweens should be a sequence. The sequence can take several different
forms.

1. It can be a string.

If it is a string, the tween names can be separated by spaces:

pkg.tween_factory1 pkg.tween_factory2 pkg.tween_factory3

The tween names can also be separated by carriage returns::

pkg.tween_factory1
pkg.tween_factory2
pkg.tween_factory3

2. It can be a Python list, where the values are strings:

[’pkg.tween_factory1’, ’pkg.tween_factory2’, ’pkg.tween_factory3’]

Each value in the sequence should be a dotted Python name.

15.11.1 Paste Configuration vs. Plain-Python Configuration

Using the following pyramid.tweens setting in the PasteDeploy .ini file in your application:

170

15.12. MAKO TEMPLATE RENDER SETTINGS

[app:main]
pyramid.tweens = pyramid_debugtoolbar.toolbar.tween_factory

pyramid.tweens.excview_tween_factory
pyramid_tm.tm_tween_factory

Is equivalent to using the following statements in your configuration code:

1 from pyramid.config import Configurator
2

3 def main(global_config, **settings):
4 settings[’pyramid.tweens’] = [
5 ’pyramid_debugtoolbar.toolbar.tween_factory’,
6 ’pyramid.tweebs.excview_tween_factory’,
7 ’pyramid_tm.tm_tween_factory’,
8]
9 config = Configurator(settings=settings)

It is fine to use both or either form.

15.12 Mako Template Render Settings

Mako derives additional settings to configure its template renderer that should be set when using it. Many
of these settings are optional and only need to be set if they should be different from the default. The
Mako Template Renderer uses a subclass of Mako’s template lookup and accepts several arguments to
configure it.

15.12.1 Mako Directories

The value(s) supplied here are passed in as the template directories. They should be in asset specification
format, for example: my.package:templates.

Config File Setting Name
mako.directories

171

http://www.makotemplates.org/docs/usage.html#usage_lookup

15. ENVIRONMENT VARIABLES AND .INI FILE SETTINGS

15.12.2 Mako Module Directory

The value supplied here tells Mako where to store compiled Mako templates. If omitted, com-
piled templates will be stored in memory. This value should be an absolute path, for example:
%(here)s/data/templates would use a directory called data/templates in the same parent
directory as the INI file.

Config File Setting Name
mako.module_directory

15.12.3 Mako Input Encoding

The encoding that Mako templates are assumed to have. By default this is set to utf-8. If you wish to
use a different template encoding, this value should be changed accordingly.

Config File Setting Name
mako.input_encoding

15.12.4 Mako Error Handler

A callable (or a dotted Python name which names a callable) which is called whenever Mako compile
or runtime exceptions occur. The callable is passed the current context as well as the exception. If the
callable returns True, the exception is considered to be handled, else it is re-raised after the function
completes. Is used to provide custom error-rendering functions.

Config File Setting Name
mako.error_handler

15.12.5 Mako Default Filters

List of string filter names that will be applied to all Mako expressions.

Config File Setting Name
mako.default_filters

172

15.13. EXAMPLES

15.12.6 Mako Import

String list of Python statements, typically individual “import” lines, which will be placed into the module
level preamble of all generated Python modules.

Config File Setting Name
mako.imports

15.12.7 Mako Strict Undefined

true or false, representing the “strict undefined” behavior of Mako (see Mako Context Variables). By
default, this is false.

Config File Setting Name
mako.strict_undefined

15.12.8 Mako Preprocessor

A callable (or a dotted Python name which names a callable) which is called to preprocess the source
before the template is called. The callable will be passed the full template source before it is parsed. The
return result of the callable will be used as the template source code.

This feature is new in Pyramid 1.1.

Config File Setting Name
mako.preprocessor

15.13 Examples

Let’s presume your configuration file is named MyProject.ini, and there is a section representing
your application named [app:main] within the file that represents your Pyramid application. The
configuration file settings documented in the above “Config File Setting Name” column would go in the
[app:main] section. Here’s an example of such a section:

173

http://www.makotemplates.org/docs/runtime.html#context-variables

15. ENVIRONMENT VARIABLES AND .INI FILE SETTINGS

1 [app:main]
2 use = egg:MyProject
3 pyramid.reload_templates = true
4 pyramid.debug_authorization = true

You can also use environment variables to accomplish the same purpose for settings documented as such.
For example, you might start your Pyramid application using the following command line:

$ PYRAMID_DEBUG_AUTHORIZATION=1 PYRAMID_RELOAD_TEMPLATES=1 \
bin/paster serve MyProject.ini

If you started your application this way, your Pyramid application would behave in the same manner as if
you had placed the respective settings in the [app:main] section of your application’s .ini file.

If you want to turn all debug settings (every setting that starts with pyramid.debug_). on in one
fell swoop, you can use PYRAMID_DEBUG_ALL=1 as an environment variable setting or you may use
pyramid.debug_all=true in the config file. Note that this does not affect settings that do not start
with pyramid.debug_* such as pyramid.reload_templates.

If you want to turn all pyramid.reload settings (every setting that starts with pyramid.reload_)
on in one fell swoop, you can use PYRAMID_RELOAD_ALL=1 as an environment variable setting or you
may use pyramid.reload_all=true in the config file. Note that this does not affect settings that
do not start with pyramid.reload_* such as pyramid.debug_notfound.

Specifying configuration settings via environment variables is generally most useful during devel-
opment, where you may wish to augment or override the more permanent settings in the configuration
file. This is useful because many of the reload and debug settings may have performance or security
(i.e., disclosure) implications that make them undesirable in a production environment.

15.14 Understanding the Distinction Between
reload_templates and reload_assets

The difference between pyramid.reload_assets and pyramid.reload_templates is a bit
subtle. Templates are themselves also treated by Pyramid as asset files (along with other static files), so
the distinction can be confusing. It’s helpful to read Overriding Assets for some context about assets in
general.

174

15.15. ADDING A CUSTOM SETTING

When pyramid.reload_templates is true, Pyramid takes advantage of the underlying tem-
plating systems’ ability to check for file modifications to an individual template file. When
pyramid.reload_templates is true but pyramid.reload_assets is not true, the template
filename returned by the pkg_resources package (used under the hood by asset resolution) is cached
by Pyramid on the first request. Subsequent requests for the same template file will return a cached tem-
plate filename. The underlying templating system checks for modifications to this particular file for every
request. Setting pyramid.reload_templates to True doesn’t affect performance dramatically
(although it should still not be used in production because it has some effect).

However, when pyramid.reload_assets is true, Pyramid will not cache the template filename,
meaning you can see the effect of changing the content of an overridden asset directory for tem-
plates without restarting the server after every change. Subsequent requests for the same template
file may return different filenames based on the current state of overridden asset directories. Setting
pyramid.reload_assets to True affects performance dramatically, slowing things down by an
order of magnitude for each template rendering. However, it’s convenient to enable when moving files
around in overridden asset directories. pyramid.reload_assets makes the system very slow when
templates are in use. Never set pyramid.reload_assets to True on a production system.

15.15 Adding A Custom Setting

From time to time, you may need to add a custom setting to your application. Here’s how:

• If you’re using an .ini file, change the .ini file, adding the setting to the [app:foo] section
representing your Pyramid application. For example:

[app:main]
.. other settings
debug_frobnosticator = True

• In the main() function that represents the place that your Pyramid WSGI application is created,
anticipate that you’ll be getting this key/value pair as a setting and do any type conversion necessary.

If you’ve done any type conversion of your custom value, reset the converted values into the
settings dictionary before you pass the dictionary as settings to the Configurator. For
example:

def main(global_config, **settings):
...
from pyramid.settings import asbool
debug_frobnosticator = asbool(settings.get(

’debug_frobnosticator’, ’false’))
settings[’debug_frobnosticator’] = debug_frobnosticator
config = Configurator(settings=settings)

175

15. ENVIRONMENT VARIABLES AND .INI FILE SETTINGS

It’s especially important that you mutate the settings dictionary with the converted
version of the variable before passing it to the Configurator: the configurator makes a copy of
settings, it doesn’t use the one you pass directly.

• When creating an includeme function that will be later added to your application’s configuration
you may access the settings dictionary through the instance of the Configurator that is passed
into the function as its only argument. For Example:

def includeme(config):
settings = config.registry.settings
debug_frobnosticator = settings[’debug_frobnosticator’]

• In the runtime code that you need to access the new settings value, find the value in the
registry.settings dictionary and use it. In view code (or any other code that has access
to the request), the easiest way to do this is via request.registry.settings. For example:

settings = request.registry.settings
debug_frobnosticator = settings[’debug_frobnosticator’]

If you wish to use the value in code that does not have access to the request and you wish to use the
value, you’ll need to use the pyramid.threadlocal.get_current_registry() API to
obtain the current registry, then ask for its settings attribute. For example:

registry = pyramid.threadlocal.get_current_registry()
settings = registry.settings
debug_frobnosticator = settings[’debug_frobnosticator’]

176

CHAPTER

SIXTEEN

LOGGING

Pyramid allows you to make use of the Python standard library logging module. This chapter describes
how to configure logging and how to send log messages to loggers that you’ve configured.

This chapter assumes you’ve used a scaffold to create a project which contains
development.ini and production.ini files which help configure logging. All of the scaf-
folds which ship along with Pyramid do this. If you’re not using a scaffold, or if you’ve used a
third-party scaffold which does not create these files, the configuration information in this chapter will
not be applicable.

16.1 Logging Configuration

A Pyramid project created from a scaffold is configured to allow you to send messages to Python
standard library logging package loggers from within your application. In particular, the PasteDeploy
development.ini and production.ini files created when you use a scaffold include a basic
configuration for the Python logging package.

PasteDeploy .ini files use the Python standard library ConfigParser format; this the same format used
as the Python logging module’s Configuration file format. The application-related and logging-related
sections in the configuration file can coexist peacefully, and the logging-related sections in the file are
used from when you run paster serve.

The paster serve command calls the logging.fileConfig function using the specified ini file if it
contains a [loggers] section (all of the scaffold-generated .ini files do). logging.fileConfig
reads the logging configuration from the ini file upon which paster serve was invoked.

Default logging configuration is provided in both the default development.ini and the
production.ini file. The logging configuration in the development.ini file is as follows:

177

http://docs.python.org/library/logging.html
http://docs.python.org/library/logging.html
http://docs.python.org/lib/module-ConfigParser.html
http://docs.python.org/lib/logging-config-fileformat.html
http://docs.python.org/lib/logging-config-api.html

16. LOGGING

1 # Begin logging configuration
2

3 [loggers]
4 keys = root, {{package_logger}}
5

6 [handlers]
7 keys = console
8

9 [formatters]
10 keys = generic
11

12 [logger_root]
13 level = INFO
14 handlers = console
15

16 [logger_{{package_logger}}]
17 level = DEBUG
18 handlers =
19 qualname = {{package}}
20

21 [handler_console]
22 class = StreamHandler
23 args = (sys.stderr,)
24 level = NOTSET
25 formatter = generic
26

27 [formatter_generic]
28 format = %(asctime)s %(levelname)-5.5s [%(name)s][%(threadName)s] %(message)s
29

30 # End logging configuration

The production.ini file uses the WARN level in its logger configuration, but it is otherwise identical.

The name {{package_logger}} above will be replaced with the name of your project’s package,
which is derived from the name you provide to your project. For instance, if you do:

1 paster create -t pyramid_starter MyApp

The logging configuration will literally be:

1 # Begin logging configuration
2

3 [loggers]
4 keys = root, myapp

178

16.1. LOGGING CONFIGURATION

5

6 [handlers]
7 keys = console
8

9 [formatters]
10 keys = generic
11

12 [logger_root]
13 level = INFO
14 handlers = console
15

16 [logger_myapp]
17 level = DEBUG
18 handlers =
19 qualname = myapp
20

21 [handler_console]
22 class = StreamHandler
23 args = (sys.stderr,)
24 level = NOTSET
25 formatter = generic
26

27 [formatter_generic]
28 format = %(asctime)s %(levelname)-5.5s [%(name)s][%(threadName)s] %(message)s
29

30 # End logging configuration

In this logging configuration:

• a logger named root is created that logs messages at a level above or equal to the INFO level to
stderr, with the following format:

2007-08-17 15:04:08,704 INFO [packagename]
Loading resource, id: 86

• a logger named myapp is configured that logs messages sent at a level above or equal to DEBUG to
stderr in the same format as the root logger.

The root logger will be used by all applications in the Pyramid process that ask for a logger (via
logging.getLogger) that has a name which begins with anything except your project’s package
name (e.g. myapp). The logger with the same name as your package name is reserved for your own
usage in your Pyramid application. Its existence means that you can log to a known logging location from
any Pyramid application generated via a scaffold.

Pyramid and many other libraries (such as Beaker, SQLAlchemy, Paste) log a number of messages to the
root logger for debugging purposes. Switching the root logger level to DEBUG reveals them:

179

16. LOGGING

[logger_root]
#level = INFO
level = DEBUG
handlers = console

Some scaffolds configure additional loggers for additional subsystems they use (such as SQLALchemy).
Take a look at the production.ini and development.ini files rendered when you create a
project from a scaffold.

16.2 Sending Logging Messages

Python’s special __name__ variable refers to the current module’s fully qualified name. From any mod-
ule in a package named myapp, the __name__ builtin variable will always be something like myapp, or
myapp.subpackage or myapp.package.subpackage if your project is named myapp. Sending
a message to this logger will send it to the myapp logger.

To log messages to the package-specific logger configured in your .ini file, simply create a logger object
using the __name__ builtin and call methods on it.

1 import logging
2 log = logging.getLogger(__name__)
3

4 def myview(request):
5 content_type = ’text/plain’
6 content = ’Hello World!’
7 log.debug(’Returning: %s (content-type: %s)’, content, content_type)
8 request.response.content_type = content_type
9 return request.response

This will result in the following printed to the console, on stderr:

16:20:20,440 DEBUG [myapp.views] Returning: Hello World!
(content-type: text/plain)

180

16.3. FILTERING LOG MESSAGES

16.3 Filtering log messages

Often there’s too much log output to sift through, such as when switching the root logger’s level to DEBUG.

An example: you’re diagnosing database connection issues in your application and only want to see
SQLAlchemy’s DEBUG messages in relation to database connection pooling. You can leave the root
logger’s level at the less verbose INFO level and set that particular SQLAlchemy logger to DEBUG on its
own, apart from the root logger:

[logger_sqlalchemy.pool]
level = DEBUG
handlers =
qualname = sqlalchemy.pool

then add it to the list of loggers:

[loggers]
keys = root, myapp, sqlalchemy.pool

No handlers need to be configured for this logger as by default non root loggers will propagate their log
records up to their parent logger’s handlers. The root logger is the top level parent of all loggers.

This technique is used in the default development.ini. The root logger’s level is set to INFO,
whereas the application’s log level is set to DEBUG:

Begin logging configuration

[loggers]
keys = root, myapp

[logger_myapp]
level = DEBUG
handlers =
qualname = helloworld

All of the child loggers of the myapp logger will inherit the DEBUG level unless they’re explicitly set
differently. Meaning the myapp.views, myapp.models (and all your app’s modules’) loggers by
default have an effective level of DEBUG too.

For more advanced filtering, the logging module provides a Filter object; however it cannot be used
directly from the configuration file.

181

http://docs.python.org/lib/node423.html

16. LOGGING

16.4 Advanced Configuration

To capture log output to a separate file, use a FileHandler (or a RotatingFileHandler):

[handler_filelog]
class = FileHandler
args = (’%(here)s/myapp.log’,’a’)
level = INFO
formatter = generic

Before it’s recognized, it needs to be added to the list of handlers:

[handlers]
keys = console, myapp, filelog

and finally utilized by a logger.

[logger_root]
level = INFO
handlers = console, filelog

These final 3 lines of configuration directs all of the root logger’s output to the myapp.log as well as
the console.

16.5 Logging Exceptions

To log (or email) exceptions generated by your Pyramid application, use the pyramid_exclog package.
Details about its configuration are in its documentation.

16.6 Request Logging with Paste’s TransLogger

Paste provides the TransLogger middleware for logging requests using the Apache Combined Log For-
mat. TransLogger combined with a FileHandler can be used to create an access.log file similar to
Apache’s.

182

http://docs.python.org/lib/node412.html
http://docs.python.org/lib/node413.html
https://docs.pylonsproject.org/projects/pyramid_exclog/dev/
http://pythonpaste.org/module-paste.translogger.html
http://httpd.apache.org/docs/2.2/logs.html#combined
http://httpd.apache.org/docs/2.2/logs.html#combined

16.6. REQUEST LOGGING WITH PASTE’S TRANSLOGGER

Like any standard middleware with a Paste entry point, TransLogger can be configured to wrap
your application using .ini file syntax. First, rename your Pyramid .ini file’s [app:main]
section to [app:mypyramidapp], then add a [filter:translogger] section, then use a
[pipeline:main] section file to form a WSGI pipeline with both the translogger and your appli-
cation in it. For instance, change from this:

[app:main]
use = egg:MyProject

To this:

[app:mypyramidapp]
use = egg:MyProject

[filter:translogger]
paste.filter_app_factory = egg:Paste#translogger
setup_console_handler = False

[pipeline:main]
pipeline = translogger

mypyramidapp

Using PasteDeploy this way to form and serve a pipeline is equivalent to wrapping your app in a TransLog-
ger instance via the bottom the main function of your project’s __init__ file:

...
app = config.make_wsgi_app()
from paste.translogger import TransLogger
app = TransLogger(app, setup_console_handler=False)
return app

TransLogger will automatically setup a logging handler to the console when called with no arguments,
so it ‘just works’ in environments that don’t configure logging. Since we’ve configured our own logging
handlers, we need to disable that option via setup_console_handler = False.

With the filter in place, TransLogger’s logger (named the ‘wsgi’ logger) will propagate its log messages
to the parent logger (the root logger), sending its output to the console when we request a page:

00:50:53,694 INFO [myapp.views] Returning: Hello World!
(content-type: text/plain)

00:50:53,695 INFO [wsgi] 192.168.1.111 - - [11/Aug/2011:20:09:33 -0700] "GET /hello
HTTP/1.1" 404 - "-"
"Mozilla/5.0 (Macintosh; U; Intel Mac OS X; en-US; rv:1.8.1.6) Gecko/20070725
Firefox/2.0.0.6"

183

16. LOGGING

To direct TransLogger to an access.log FileHandler, we need to add that FileHandler to the wsgi
logger’s list of handlers:

Begin logging configuration

[loggers]
keys = root, myapp, wsgi

[logger_wsgi]
level = INFO
handlers = handler_accesslog
qualname = wsgi
propagate = 0

[handler_accesslog]
class = FileHandler
args = (’%(here)s/access.log’,’a’)
level = INFO
formatter = generic

As mentioned above, non-root loggers by default propagate their log records to the root logger’s handlers
(currently the console handler). Setting propagate to 0 (false) here disables this; so the wsgi logger
directs its records only to the accesslog handler.

Finally, there’s no need to use the generic formatter with TransLogger as TransLogger itself provides
all the information we need. We’ll use a formatter that passes-through the log messages as is:

[formatters]
keys = generic, accesslog

[formatter_accesslog]
format = %(message)s

Then wire this new accesslog formatter into the FileHandler:

[handler_accesslog]
class = FileHandler
args = (’%(here)s/access.log’,’a’)
level = INFO
formatter = accesslog

184

CHAPTER

SEVENTEEN

PASTE

Packages generated via a scaffold make use of a system created by Ian Bicking named Paste. Paste
provides the following features:

• A way to declare WSGI application configuration in an .ini file (PasteDeploy).

• A WSGI server runner (paster serve) which can accept PasteDeploy .ini file values as input.

• A mechanism for rendering scaffolds into projects (paster create).

Paste is not a particularly integral part of Pyramid. It’s more or less used directly only in projects created
from scaffolds. It’s possible to create a Pyramid application which does not use Paste at all. We show
a Pyramid application that doesn’t use Paste in Creating Your First Pyramid Application. However, all
Pyramid scaffolds use the system, to provide new developers with a standardized way of starting, stop-
ping, and setting deployment values. This chapter is not a replacement for documentation about Paste
or PasteDeploy; it only contextualizes the use of Paste within Pyramid. For detailed documentation, see
http://pythonpaste.org.

17.1 PasteDeploy

PasteDeploy is the system that Pyramid uses to allow deployment settings to be spelled using an .ini
configuration file format. It also allows the paster serve command to work. Its configuration format
provides a convenient place to define application deployment settings and WSGI server settings, and its
server runner allows you to stop and start a Pyramid application easily.

185

http://pythonpaste.org

17. PASTE

17.1.1 Entry Points and PasteDeploy .ini Files

In the Creating a Pyramid Project chapter, we breezed over the meaning of a configuration line in the
deployment.ini file. This was the use = egg:MyProject line in the [app:main] section.
We breezed over it because it’s pretty confusing and “too much information” for an introduction to the
system. We’ll try to give it a bit of attention here. Let’s see the config file again:

1 [app:main]
2 use = egg:MyProject
3

4 pyramid.reload_templates = true
5 pyramid.debug_authorization = false
6 pyramid.debug_notfound = false
7 pyramid.debug_routematch = false
8 pyramid.debug_templates = true
9 pyramid.default_locale_name = en

10 pyramid.includes = pyramid_debugtoolbar
11

12 [server:main]
13 use = egg:Paste#http
14 host = 0.0.0.0
15 port = 6543
16

17 # Begin logging configuration
18

19 [loggers]
20 keys = root, myproject
21

22 [handlers]
23 keys = console
24

25 [formatters]
26 keys = generic
27

28 [logger_root]
29 level = INFO
30 handlers = console
31

32 [logger_myproject]
33 level = DEBUG
34 handlers =
35 qualname = myproject
36

37 [handler_console]
38 class = StreamHandler
39 args = (sys.stderr,)

186

17.1. PASTEDEPLOY

40 level = NOTSET
41 formatter = generic
42

43 [formatter_generic]
44 format = %(asctime)s %(levelname)-5.5s [%(name)s] %(message)s
45

46 # End logging configuration

The line in [app:main] above that says use = egg:MyProject is actually shorthand for a longer
spelling: use = egg:MyProject#main. The #main part is omitted for brevity, as #main is a
default defined by PasteDeploy. egg:MyProject#main is a string which has meaning to PasteDeploy.
It points at a setuptools entry point named main defined in the MyProject project.

Take a look at the generated setup.py file for this project.

1 import os
2

3 from setuptools import setup, find_packages
4

5 here = os.path.abspath(os.path.dirname(__file__))
6 README = open(os.path.join(here, ’README.txt’)).read()
7 CHANGES = open(os.path.join(here, ’CHANGES.txt’)).read()
8

9 requires = [’pyramid’, ’pyramid_debugtoolbar’]
10

11 setup(name=’MyProject’,
12 version=’0.0’,
13 description=’MyProject’,
14 long_description=README + ’\n\n’ + CHANGES,
15 classifiers=[
16 "Programming Language :: Python",
17 "Framework :: Pylons",
18 "Topic :: Internet :: WWW/HTTP",
19 "Topic :: Internet :: WWW/HTTP :: WSGI :: Application",
20],
21 author=’’,
22 author_email=’’,
23 url=’’,
24 keywords=’web pyramid pylons’,
25 packages=find_packages(),
26 include_package_data=True,
27 zip_safe=False,
28 install_requires=requires,
29 tests_require=requires,
30 test_suite="myproject",

187

17. PASTE

31 entry_points = """\
32 [paste.app_factory]
33 main = myproject:main
34 """,
35 paster_plugins=[’pyramid’],
36)

Note that the entry_point line in setup.py points at a string which looks a lot like an .ini file.
This string representation of an .ini file has a section named [paste.app_factory]. Within this
section, there is a key named main (the entry point name) which has a value myproject:main. The
key main is what our egg:MyProject#main value of the use section in our config file is pointing at,
although it is actually shortened to egg:MyProject there. The value represents a dotted Python name
path, which refers to a callable in our myproject package’s __init__.py module.

The egg: prefix in egg:MyProject indicates that this is an entry point URI specifier, where the
“scheme” is “egg”. An “egg” is created when you run setup.py install or setup.py develop
within your project.

In English, this entry point can thus be referred to as a “Paste application factory in the MyProject
project which has the entry point named main where the entry point refers to a main function in
the mypackage module”. Indeed, if you open up the __init__.py module generated within any
scaffold-generated package, you’ll see a main function. This is the function called by PasteDeploy when
the paster serve command is invoked against our application. It accepts a global configuration ob-
ject and returns an instance of our application.

17.1.2 [DEFAULTS] Section of a PasteDeploy .ini File

You can add a [DEFAULT] section to your PasteDeploy .ini file. Such a section should consists of
global parameters that are shared by all the applications, servers and middleware defined within the con-
figuration file. The values in a [DEFAULT] section will be passed to your application’s main function
as global_config (see the reference to the main function in __init__.py).

188

CHAPTER

EIGHTEEN

COMMAND-LINE PYRAMID

Your Pyramid application can be controlled and inspected using a variety of command-line utilities. These
utilities are documented in this chapter.

18.1 Displaying Matching Views for a Given URL

For a big application with several views, it can be hard to keep the view configuration details in your head,
even if you defined all the views yourself. You can use the paster pviews command in a terminal
window to print a summary of matching routes and views for a given URL in your application. The
paster pviews command accepts two arguments. The first argument to pviews is the path to your
application’s .ini file and section name inside the .ini file which points to your application. This
should be of the format config_file#section_name. The second argument is the URL to test for
matching views. The section_name may be omitted; if it is, it’s considered to be main.

Here is an example for a simple view configuration using traversal:

1 $../bin/paster pviews development.ini#tutorial /FrontPage
2

3 URL = /FrontPage
4

5 context: <tutorial.models.Page object at 0xa12536c>
6 view name:
7

8 View:
9 -----

10 tutorial.views.view_page
11 required permission = view

189

18. COMMAND-LINE PYRAMID

The output always has the requested URL at the top and below that all the views that matched with their
view configuration details. In this example only one view matches, so there is just a single View section.
For each matching view, the full code path to the associated view callable is shown, along with any
permissions and predicates that are part of that view configuration.

A more complex configuration might generate something like this:

1 $../bin/paster pviews development.ini#shootout /about
2

3 URL = /about
4

5 context: <shootout.models.RootFactory object at 0xa56668c>
6 view name: about
7

8 Route:
9 ------

10 route name: about
11 route pattern: /about
12 route path: /about
13 subpath:
14 route predicates (request method = GET)
15

16 View:
17 -----
18 shootout.views.about_view
19 required permission = view
20 view predicates (request_param testing, header X/header)
21

22 Route:
23 ------
24 route name: about_post
25 route pattern: /about
26 route path: /about
27 subpath:
28 route predicates (request method = POST)
29

30 View:
31 -----
32 shootout.views.about_view_post
33 required permission = view
34 view predicates (request_param test)
35

36 View:
37 -----
38 shootout.views.about_view_post2
39 required permission = view

190

18.2. THE INTERACTIVE SHELL

40 view predicates (request_param test2)

In this case, we are dealing with a URL dispatch application. This specific URL has two matching routes.
The matching route information is displayed first, followed by any views that are associated with that
route. As you can see from the second matching route output, a route can be associated with more than
one view.

For a URL that doesn’t match any views, paster pviews will simply print out a Not found message.

18.2 The Interactive Shell

Once you’ve installed your program for development using setup.py develop, you can use an inter-
active Python shell to execute expressions in a Python environment exactly like the one that will be used
when your application runs “for real”. To do so, use the paster pshell command.

The argument to pshell follows the format config_file#section_name where config_file
is the path to your application’s .ini file and section_name is the app section name inside the
.ini file which points to your application. For example, if your application .ini file might have a
[app:main] section that looks like so:

1 [app:main]
2 use = egg:MyProject
3 pyramid.reload_templates = true
4 pyramid.debug_authorization = false
5 pyramid.debug_notfound = false
6 pyramid.debug_templates = true
7 pyramid.default_locale_name = en

If so, you can use the following command to invoke a debug shell using the name MyProject as a
section name:

chrism@thinko env26]$ bin/paster pshell starter/development.ini#MyProject
Python 2.6.5 (r265:79063, Apr 29 2010, 00:31:32)
[GCC 4.4.3] on linux2
Type "help" for more information.

Environment:
app The WSGI application.
registry Active Pyramid registry.
request Active request object.

191

18. COMMAND-LINE PYRAMID

root Root of the default resource tree.
root_factory Default root factory used to create ‘root‘.

>>> root
<myproject.resources.MyResource object at 0x445270>
>>> registry
<Registry myproject>
>>> registry.settings[’pyramid.debug_notfound’]
False
>>> from myproject.views import my_view
>>> from pyramid.request import Request
>>> r = Request.blank(’/’)
>>> my_view(r)
{’project’: ’myproject’}

The WSGI application that is loaded will be available in the shell as the app global. Also, if the applica-
tion that is loaded is the Pyramid app with no surrounding middleware, the root object returned by the
default root factory, registry, and request will be available.

You can also simply rely on the main default section name by omitting any hash after the filename:

chrism@thinko env26]$ bin/paster pshell starter/development.ini

Press Ctrl-D to exit the interactive shell (or Ctrl-Z on Windows).

18.2.1 Extending the Shell

It is convenient when using the interactive shell often to have some variables significant to your application
already loaded as globals when you start the pshell. To facilitate this, pshell will look for a special
[pshell] section in your INI file and expose the subsequent key/value pairs to the shell. Each key
is a variable name that will be global within the pshell session; each value is a dotted Python name. If
specified, the special key setup should be a dotted Python name pointing to a callable that accepts the
dictionary of globals that will be loaded into the shell. This allows for some custom initializing code to be
executed each time the pshell is run. The setup callable can also be specified from the commandline
using the --setup option which will override the key in the INI file.

For example, you want to expose your model to the shell, along with the database session so that you can
mutate the model on an actual database. Here, we’ll assume your model is stored in the myapp.models
package.

192

18.2. THE INTERACTIVE SHELL

1 [pshell]
2 setup = myapp.lib.pshell.setup
3 m = myapp.models
4 session = myapp.models.DBSession
5 t = transaction

By defining the setup callable, we will create the module myapp.lib.pshell containing a callable
named setup that will receive the global environment before it is exposed to the shell. Here we mutate
the environment’s request as well as add a new value containing a WebTest version of the application to
which we can easily submit requests.

1 # myapp/lib/pshell.py
2 from webtest import TestApp
3

4 def setup(env):
5 env[’request’].host = ’www.example.com’
6 env[’request’].scheme = ’https’
7 env[’testapp’] = TestApp(env[’app’])

When this INI file is loaded, the extra variables m, session and t will be available for use immediately.
Since a setup callable was also specified, it is executed and a new variable testapp is exposed, and
the request is configured to generate urls from the host http://www.example.com. For example:

chrism@thinko env26]$ bin/paster pshell starter/development.ini
Python 2.6.5 (r265:79063, Apr 29 2010, 00:31:32)
[GCC 4.4.3] on linux2
Type "help" for more information.

Environment:
app The WSGI application.
registry Active Pyramid registry.
request Active request object.
root Root of the default resource tree.
root_factory Default root factory used to create ‘root‘.
testapp <webtest.TestApp object at ...>

Custom Variables:
m myapp.models
session myapp.models.DBSession
t transaction

>>> testapp.get(’/’)
<200 OK text/html body=’<!DOCTYPE...l>\n’/3337>

193

18. COMMAND-LINE PYRAMID

>>> request.route_url(’home’)
’https://www.example.com/’

18.2.2 IPython

If you have IPython installed in the interpreter you use to invoke the paster command, the pshell
command will use an IPython interactive shell instead of a standard Python interpreter shell. If you don’t
want this to happen, even if you have IPython installed, you can pass the --disable-ipython flag to
the pshell command to use a standard Python interpreter shell unconditionally.

[chrism@vitaminf shellenv]$../bin/paster pshell --disable-ipython \
development.ini#MyProject

18.3 Displaying All Application Routes

You can use the paster proutes command in a terminal window to print a summary of routes related
to your application. Much like the paster pshell command (see The Interactive Shell), the paster
proutes command accepts one argument with the format config_file#section_name. The
config_file is the path to your application’s .ini file, and section_name is the app section
name inside the .ini file which points to your application. By default, the section_name is main
and can be omitted.

For example:

1 [chrism@thinko MyProject]$../bin/paster proutes development.ini#MyProject
2 Name Pattern View
3 ---- ------- ----
4 home / <function my_view>
5 home2 / <function my_view>
6 another /another None
7 static/ static/*subpath <static_view object>
8 catchall /*subpath <function static_view>

paster proutes generates a table. The table has three columns: a Name column, a Pattern column,
and a View column. The items listed in the Name column are route names, the items listed in the Pattern
column are route patterns, and the items listed in the View column are representations of the view callable
that will be invoked when a request matches the associated route pattern. The view column may show
None if no associated view callable could be found. If no routes are configured within your application,
nothing will be printed to the console when paster proutes is executed.

194

http://en.wikipedia.org/wiki/IPython

18.4. DISPLAYING “TWEENS”

18.4 Displaying “Tweens”

A tween is a bit of code that sits between the main Pyramid application request handler and the WSGI
application which calls it. A user can get a representation of both the implicit tween ordering (the or-
dering specified by calls to pyramid.config.Configurator.add_tween()) and the explicit
tween ordering (specified by the pyramid.tweens configuration setting) orderings using the paster
ptweens command. Tween factories will show up represented by their standard Python dotted name in
the paster ptweens output.

For example, here’s the paster pwteens command run against a system configured without any
explicit tweens:

1 [chrism@thinko pyramid]$ paster ptweens development.ini
2 "pyramid.tweens" config value NOT set (implicitly ordered tweens used)
3

4 Implicit Tween Chain
5

6 Position Name Alias
7 -------- ---- -----
8 - - INGRESS
9 0 pyramid_debugtoolbar.toolbar.toolbar_tween_factory pdbt

10 1 pyramid.tweens.excview_tween_factory excview
11 - - MAIN

Here’s the paster pwteens command run against a system configured with explicit tweens defined
in its development.ini file:

1 [chrism@thinko pyramid]$ paster ptweens development.ini
2 "pyramid.tweens" config value set (explicitly ordered tweens used)
3

4 Explicit Tween Chain (used)
5

6 Position Name
7 -------- ----
8 - INGRESS
9 0 starter.tween_factory2

10 1 starter.tween_factory1
11 2 pyramid.tweens.excview_tween_factory
12 - MAIN
13

14 Implicit Tween Chain (not used)
15

16 Position Name Alias
17 -------- ---- -----

195

18. COMMAND-LINE PYRAMID

18 - - INGRESS
19 0 pyramid_debugtoolbar.toolbar.toolbar_tween_factory pdbt
20 1 pyramid.tweens.excview_tween_factory excview
21 - - MAIN

Here’s the application configuration section of the development.ini used by the above paster
ptweens command which reprorts that the explicit tween chain is used:

1 [app:main]
2 use = egg:starter
3 reload_templates = true
4 debug_authorization = false
5 debug_notfound = false
6 debug_routematch = false
7 debug_templates = true
8 default_locale_name = en
9 pyramid.include = pyramid_debugtoolbar

10 pyramid.tweens = starter.tween_factory2
11 starter.tween_factory1
12 pyramid.tweens.excview_tween_factory

See Registering “Tweens” for more information about tweens.

18.5 Writing a Script

All web applications are, at their hearts, systems which accept a request and return a response. When
a request is accepted by a Pyramid application, the system receives state from the request which is later
relied on by your application code. For example, one view callable may assume it’s working against a
request that has a request.matchdict of a particular composition, while another assumes a different
composition of the matchdict.

In the meantime, it’s convenient to be able to write a Python script that can work “in a Pyramid environ-
ment”, for instance to update database tables used by your Pyramid application. But a “real” Pyramid
environment doesn’t have a completely static state independent of a request; your application (and Pyra-
mid itself) is almost always reliant on being able to obtain information from a request. When you run
a Python script that simply imports code from your application and tries to run it, there just is no re-
quest data, because there isn’t any real web request. Therefore some parts of your application and some
Pyramid APIs will not work.

196

18.5. WRITING A SCRIPT

For this reason, Pyramid makes it possible to run a script in an environment much like the environment
produced when a particular request reaches your Pyramid application. This is achieved by using the
pyramid.paster.bootstrap() command in the body of your script.

This feature is new as of Pyramid 1.1.

In the simplest case, pyramid.paster.bootstrap() can be used with a single argument, which
accepts the PasteDeploy .ini file representing Pyramid your application configuration as a single argu-
ment:

from pyramid.paster import bootstrap
env = bootstrap(’/path/to/my/development.ini’)
print env[’request’].route_url(’home’)

pyramid.paster.bootstrap() returns a dictionary containing framework-related information.
This dictionary will always contain a request object as its request key.

The following keys are available in the env dictionary returned by
pyramid.paster.bootstrap():

request

A pyramid.request.Request object implying the current request state for your script.

app

The WSGI application object generated by bootstrapping.

root

The resource root of your Pyramid application. This is an object generated by the root factory
configured in your application.

registry

The application registry of your Pyramid application.

closer

A parameterless callable that can be used to pop an internal Pyramid thread-
local stack (used by pyramid.threadlocal.get_current_registry() and
pyramid.threadlocal.get_current_request()) when your scripting job is fin-
ished.

Let’s assume that the /path/to/my/development.ini file used in the example above looks like
so:

197

18. COMMAND-LINE PYRAMID

[pipeline:main]
pipeline = translogger

another

[filter:translogger]
filter_app_factory = egg:Paste#translogger
setup_console_handler = False
logger_name = wsgi

[app:another]
use = egg:MyProject

The configuration loaded by the above bootstrap example will use the configura-
tion implied by the [pipeline:main] section of your configuration file by default.
Specifying /path/to/my/development.ini is logically equivalent to specifying
/path/to/my/development.ini#main. In this case, we’ll be using a configuration that
includes an app object which is wrapped in the Paste “translogger” middleware (which logs requests to
the console).

You can also specify a particular section of the PasteDeploy .ini file to load instead of main:

from pyramid.paster import bootstrap
env = bootstrap(’/path/to/my/development.ini#another’)
print env[’request’].route_url(’home’)

The above example specifies the another app, pipeline, or composite section of your
PasteDeploy configuration file. The app object present in the env dictionary returned by
pyramid.paster.bootstrap() will be a Pyramid router.

18.5.1 Changing the Request

By default, Pyramid will generate a request object in the env dictionary for the URL
http://localhost:80/. This means that any URLs generated by Pyramid during the execution
of your script will be anchored here. This is generally not what you want.

So how do we make Pyramid generate the correct URLs?

Assuming that you have a route configured in your application like so:

198

18.5. WRITING A SCRIPT

config.add_route(’verify’, ’/verify/{code}’)

You need to inform the Pyramid environment that the WSGI application is handling requests from a
certain base. For example, we want to mount our application at example.com/prefix and the generated
URLs should use HTTPS. This can be done by mutating the request object:

from pyramid.paster import bootstrap
env = bootstrap(’/path/to/my/development.ini#another’)
env[’request’].host = ’example.com’
env[’request’].scheme = ’https’
env[’request’].script_name = ’/prefix’
print env[’request’].application_url
will print ’https://example.com/prefix/another/url’

Now you can readily use Pyramid’s APIs for generating URLs:

env[’request’].route_url(’verify’, code=’1337’)
will return ’https://example.com/prefix/verify/1337’

18.5.2 Cleanup

When your scripting logic finishes, it’s good manners (but not required) to call the closer callback:

from pyramid.paster import bootstrap
env = bootstrap(’/path/to/my/development.ini’)

.. do stuff ...

env[’closer’]()

18.5.3 Setting Up Logging

By default, pyramid.paster.bootstrap() does not configure logging parameters present in the
configuration file. If you’d like to configure logging based on [logger] and related sections in the
configuration file, use the following command:

199

18. COMMAND-LINE PYRAMID

import logging.config
logging.config.fileConfig(’/path/to/my/development.ini’)

200

CHAPTER

NINETEEN

INTERNATIONALIZATION AND
LOCALIZATION

Internationalization (i18n) is the act of creating software with a user interface that can potentially be
displayed in more than one language or cultural context. Localization (l10n) is the process of displaying
the user interface of an internationalized application in a particular language or cultural context.

Pyramid offers internationalization and localization subsystems that can be used to translate the text of
buttons, error messages and other software- and template-defined values into the native language of a user
of your application.

19.1 Creating a Translation String

While you write your software, you can insert specialized markup into your Python code that makes it
possible for the system to translate text values into the languages used by your application’s users. This
markup creates a translation string. A translation string is an object that behaves mostly like a normal
Unicode object, except that it also carries around extra information related to its job as part of the Pyramid
translation machinery.

19.1.1 Using The TranslationString Class

The most primitive way to create a translation string is to use the
pyramid.i18n.TranslationString callable:

201

19. INTERNATIONALIZATION AND LOCALIZATION

1 from pyramid.i18n import TranslationString
2 ts = TranslationString(’Add’)

This creates a Unicode-like object that is a TranslationString.

For people more familiar with Zope i18n, a TranslationString is a lot like a
zope.i18nmessageid.Message object. It is not a subclass, however. For people more fa-
miliar with Pylons or Django i18n, using a TranslationString is a lot like using “lazy” versions of
related gettext APIs.

The first argument to TranslationString is the msgid; it is required. It represents the key into
the translation mappings provided by a particular localization. The msgid argument must be a Unicode
object or an ASCII string. The msgid may optionally contain replacement markers. For instance:

1 from pyramid.i18n import TranslationString
2 ts = TranslationString(’Add ${number}’)

Within the string above, ${number} is a replacement marker. It will be replaced by whatever is in
the mapping for a translation string. The mapping may be supplied at the same time as the replacement
marker itself:

1 from pyramid.i18n import TranslationString
2 ts = TranslationString(’Add ${number}’, mapping={’number’:1})

Any number of replacement markers can be present in the msgid value, any number of times. Only
markers which can be replaced by the values in the mapping will be replaced at translation time. The
others will not be interpolated and will be output literally.

A translation string should also usually carry a domain. The domain represents a translation category to
disambiguate it from other translations of the same msgid, in case they conflict.

1 from pyramid.i18n import TranslationString
2 ts = TranslationString(’Add ${number}’, mapping={’number’:1},
3 domain=’form’)

The above translation string named a domain of form. A translator function will often use the domain
to locate the right translator file on the filesystem which contains translations for a given domain. In this
case, if it were trying to translate our msgid to German, it might try to find a translation from a gettext file
within a translation directory like this one:

202

19.1. CREATING A TRANSLATION STRING

locale/de/LC_MESSAGES/form.mo

In other words, it would want to take translations from the form.mo translation file in the German
language.

Finally, the TranslationString constructor accepts a default argument. If a default argument is
supplied, it replaces usages of the msgid as the default value for the translation string. When default
is None, the msgid value passed to a TranslationString is used as an implicit message identifier. Message
identifiers are matched with translations in translation files, so it is often useful to create translation strings
with “opaque” message identifiers unrelated to their default text:

1 from pyramid.i18n import TranslationString
2 ts = TranslationString(’add-number’, default=’Add ${number}’,
3 domain=’form’, mapping={’number’:1})

When default text is used, Default text objects may contain replacement values.

19.1.2 Using the TranslationStringFactory Class

Another way to generate a translation string is to use the TranslationStringFactory object. This
object is a translation string factory. Basically a translation string factory presets the domain value of
any translation string generated by using it. For example:

1 from pyramid.i18n import TranslationStringFactory
2 _ = TranslationStringFactory(’pyramid’)
3 ts = _(’Add ${number}’, msgid=’add-number’, mapping={’number’:1})

We assigned the translation string factory to the name _. This is a convention which will be
supported by translation file generation tools.

After assigning _ to the result of a TranslationStringFactory(), the subsequent result of calling
_ will be a TranslationString instance. Even though a domain value was not passed to _ (as
would have been necessary if the TranslationString constructor were used instead of a translation
string factory), the domain attribute of the resulting translation string will be pyramid. As a result, the
previous code example is completely equivalent (except for spelling) to:

203

19. INTERNATIONALIZATION AND LOCALIZATION

1 from pyramid.i18n import TranslationString as _
2 ts = _(’Add ${number}’, msgid=’add-number’, mapping={’number’:1},
3 domain=’pyramid’)

You can set up your own translation string factory much like the one provided above by using the
TranslationStringFactory class. For example, if you’d like to create a translation string fac-
tory which presets the domain value of generated translation strings to form, you’d do something like
this:

1 from pyramid.i18n import TranslationStringFactory
2 _ = TranslationStringFactory(’form’)
3 ts = _(’Add ${number}’, msgid=’add-number’, mapping={’number’:1})

Creating a unique domain for your application via a translation string factory is best practice. Using your
own unique translation domain allows another person to reuse your application without needing to merge
your translation files with his own. Instead, he can just include your package’s translation directory via
the pyramid.config.Configurator.add_translation_dirs() method.

For people familiar with Zope internationalization, a TranslationStringFactory is a lot like a
zope.i18nmessageid.MessageFactory object. It is not a subclass, however.

19.2 Working With gettext Translation Files

The basis of Pyramid translation services is GNU gettext. Once your application source code files and
templates are marked up with translation markers, you can work on translations by creating various kinds
of gettext files.

The steps a developer must take to work with gettext message catalog files within a Pyramid
application are very similar to the steps a Pylons developer must take to do the same. See the Pylons
internationalization documentation for more information.

GNU gettext uses three types of files in the translation framework, .pot files, .po files and .mo files.

.pot (Portable Object Template) files

204

http://wiki.pylonshq.com/display/pylonsdocs/Internationalization+and+Localization
http://wiki.pylonshq.com/display/pylonsdocs/Internationalization+and+Localization

19.2. WORKING WITH GETTEXT TRANSLATION FILES

A .pot file is created by a program which searches through your project’s source code and
which picks out every message identifier passed to one of the _() functions (eg. translation
string constructions). The list of all message identifiers is placed into a .pot file, which
serves as a template for creating .po files.

.po (Portable Object) files

The list of messages in a .pot file are translated by a human to a particular language; the
result is saved as a .po file.

.mo (Machine Object) files

A .po file is turned into a machine-readable binary file, which is the .mo file. Compiling
the translations to machine code makes the localized program run faster.

The tools for working with gettext translation files related to a Pyramid application is Babel and Lin-
gua. Lingua is a Balel extension that provides support for scraping i18n references out of Python and
Chameleon files.

19.2.1 Installing Babel and Lingua

In order for the commands related to working with gettext translation files to work properly, you will
need to have Babel and Lingua installed into the same environment in which Pyramid is installed.

Installation on UNIX

If the virtualenv into which you’ve installed your Pyramid application lives in /my/virtualenv, you
can install Babel and Lingua like so:

$ cd /my/virtualenv
$ bin/easy_install Babel lingua

Installation on Windows

If the virtualenv into which you’ve installed your Pyramid application lives in C:\my\virtualenv,
you can install Babel and Lingua like so:

205

19. INTERNATIONALIZATION AND LOCALIZATION

C> cd \my\virtualenv
C> Scripts\easy_install Babel lingua

Changing the setup.py

You need to add a few boilerplate lines to your application’s setup.py file in order to properly generate
gettext files from your application.

See Creating a Pyramid Project to learn about about the composition of an application’s
setup.py file.

In particular, add the Babel and lingua distributions to the install_requires list and insert a
set of references to Babel message extractors within the call to setuptools.setup() inside your
application’s setup.py file:

1 setup(name="mypackage",
2 # ...
3 install_requires = [
4 # ...
5 ’Babel’,
6 ’lingua’,
7],
8 message_extractors = { ’.’: [
9 (’**.py’, ’lingua_python’, None),

10 (’**.pt’, ’lingua_xml’, None),
11]},
12)

The message_extractors stanza placed into the setup.py file causes the Babel message catalog
extraction machinery to also consider *.pt files when doing message id extraction.

19.2.2 Extracting Messages from Code and Templates

Once Babel and Lingua are installed and your application’s setup.py file has the correct message
extractor references, you may extract a message catalog template from the code and Chameleon templates
which reside in your Pyramid application. You run a setup.py command to extract the messages:

206

19.2. WORKING WITH GETTEXT TRANSLATION FILES

$ cd /place/where/myapplication/setup.py/lives
$ mkdir -p myapplication/locale
$ python setup.py extract_messages

The message catalog .pot template will end up in:

myapplication/locale/myapplication.pot.

Translation Domains

The name myapplication above in the filename myapplication.pot denotes the translation
domain of the translations that must be performed to localize your application. By default, the translation
domain is the project name of your Pyramid application.

To change the translation domain of the extracted messages in your project, edit the setup.cfg file of
your application, The default setup.cfg file of a Paster-generated Pyramid application has stanzas in
it that look something like the following:

1 [compile_catalog]
2 directory = myproject/locale
3 domain = MyProject
4 statistics = true
5

6 [extract_messages]
7 add_comments = TRANSLATORS:
8 output_file = myproject/locale/MyProject.pot
9 width = 80

10

11 [init_catalog]
12 domain = MyProject
13 input_file = myproject/locale/MyProject.pot
14 output_dir = myproject/locale
15

16 [update_catalog]
17 domain = MyProject
18 input_file = myproject/locale/MyProject.pot
19 output_dir = myproject/locale
20 previous = true

In the above example, the project name is MyProject. To indicate that you’d like the domain of your
translations to be mydomain instead, change the setup.cfg file stanzas to look like so:

207

19. INTERNATIONALIZATION AND LOCALIZATION

1 [compile_catalog]
2 directory = myproject/locale
3 domain = mydomain
4 statistics = true
5

6 [extract_messages]
7 add_comments = TRANSLATORS:
8 output_file = myproject/locale/mydomain.pot
9 width = 80

10

11 [init_catalog]
12 domain = mydomain
13 input_file = myproject/locale/mydomain.pot
14 output_dir = myproject/locale
15

16 [update_catalog]
17 domain = mydomain
18 input_file = myproject/locale/mydomain.pot
19 output_dir = myproject/locale
20 previous = true

19.2.3 Initializing a Message Catalog File

Once you’ve extracted messages into a .pot file (see Extracting Messages from Code and Templates),
to begin localizing the messages present in the .pot file, you need to generate at least one .po file. A
.po file represents translations of a particular set of messages to a particular locale. Initialize a .po file
for a specific locale from a pre-generated .pot template by using the setup.py init_catalog
command:

$ cd /place/where/myapplication/setup.py/lives
$ python setup.py init_catalog -l es

By default, the message catalog .po file will end up in:

myapplication/locale/es/LC_MESSAGES/myapplication.po.

Once the file is there, it can be worked on by a human translator. One tool which may help with this is
Poedit.

Note that Pyramid itself ignores the existence of all .po files. For a running application to have transla-
tions available, a .mo file must exist. See Compiling a Message Catalog File.

208

http://www.poedit.net/

19.3. USING A LOCALIZER

19.2.4 Updating a Catalog File

If more translation strings are added to your application, or translation strings change, you will need to
update existing .po files based on changes to the .pot file, so that the new and changed messages can
also be translated or re-translated.

First, regenerate the .pot file as per Extracting Messages from Code and Templates. Then use the
setup.py update_catalog command.

$ cd /place/where/myapplication/setup.py/lives
$ python setup.py update_catalog

19.2.5 Compiling a Message Catalog File

Finally, to prepare an application for performing actual runtime translations, compile .po files to .mo
files:

$ cd /place/where/myapplication/setup.py/lives
$ python setup.py compile_catalog

This will create a .mo file for each .po file in your application. As long as the translation directory in
which the .mo file ends up in is configured into your application, these translations will be available to
Pyramid.

19.3 Using a Localizer

A localizer is an object that allows you to perform translation or pluralization “by hand” in an application.
You may use the pyramid.i18n.get_localizer() function to obtain a localizer. This function
will return either the localizer object implied by the active locale negotiator or a default localizer object
if no explicit locale negotiator is registered.

1 from pyramid.i18n import get_localizer
2

3 def aview(request):
4 locale = get_localizer(request)

If you need to create a localizer for a locale use the pyramid.i18n.make_localizer()
function.

209

19. INTERNATIONALIZATION AND LOCALIZATION

19.3.1 Performing a Translation

A localizer has a translate method which accepts either a translation string or a Unicode string
and which returns a Unicode object representing the translation. So, generating a translation in a view
component of an application might look like so:

1 from pyramid.i18n import get_localizer
2 from pyramid.i18n import TranslationString
3

4 ts = TranslationString(’Add ${number}’, mapping={’number’:1},
5 domain=’pyramid’)
6

7 def aview(request):
8 localizer = get_localizer(request)
9 translated = localizer.translate(ts) # translation string

10 # ... use translated ...

The get_localizer() function will return a pyramid.i18n.Localizer object
bound to the locale name represented by the request. The translation returned from its
pyramid.i18n.Localizer.translate() method will depend on the domain attribute
of the provided translation string as well as the locale of the localizer.

If you’re using Chameleon templates, you don’t need to pre-translate translation strings this way.
See Chameleon Template Support for Translation Strings.

19.3.2 Performing a Pluralization

A localizer has a pluralize method with the following signature:

1 def pluralize(singular, plural, n, domain=None, mapping=None):
2 ...

The singular and plural arguments should each be a Unicode value representing a message iden-
tifier. n should be an integer. domain should be a translation domain, and mapping should be a
dictionary that is used for replacement value interpolation of the translated string. If n is plural for the
current locale, pluralize will return a Unicode translation for the message id plural, otherwise it
will return a Unicode translation for the message id singular.

The arguments provided as singular and/or plural may also be translation string objects, but the
domain and mapping information attached to those objects is ignored.

210

19.4. OBTAINING THE LOCALE NAME FOR A REQUEST

1 from pyramid.i18n import get_localizer
2

3 def aview(request):
4 localizer = get_localizer(request)
5 translated = localizer.pluralize(’Item’, ’Items’, 1, ’mydomain’)
6 # ... use translated ...

19.4 Obtaining the Locale Name for a Request

You can obtain the locale name related to a request by using the
pyramid.i18n.get_locale_name() function.

1 from pyramid.i18n import get_locale_name
2

3 def aview(request):
4 locale_name = get_locale_name(request)

This returns the locale name negotiated by the currently active locale negotiator or the default locale
name if the locale negotiator returns None. You can change the default locale name by changing the
pyramid.default_locale_name setting; see Default Locale Name.

Once get_locale_name() is first run, the locale name is stored on the request object. Subsequent
calls to get_locale_name() will return the stored locale name without invoking the locale negotia-
tor. To avoid this caching, you can use the pyramid.i18n.negotiate_locale_name() func-
tion:

1 from pyramid.i18n import negotiate_locale_name
2

3 def aview(request):
4 locale_name = negotiate_locale_name(request)

You can also obtain the locale name related to a request using the locale_name attribute of a localizer.

1 from pyramid.i18n import get_localizer
2

3 def aview(request):
4 localizer = get_localizer(request)
5 locale_name = localizer.locale_name

Obtaining the locale name as an attribute of a localizer is equivalent to obtaining a locale name by calling
the get_locale_name() function.

211

19. INTERNATIONALIZATION AND LOCALIZATION

19.5 Performing Date Formatting and Currency Formatting

Pyramid does not itself perform date and currency formatting for different locales. However, Babel can
help you do this via the babel.core.Locale class. The Babel documentation for this class provides
minimal information about how to perform date and currency related locale operations. See Installing
Babel and Lingua for information about how to install Babel.

The babel.core.Locale class requires a locale name as an argument to its constructor. You can use
Pyramid APIs to obtain the locale name for a request to pass to the babel.core.Locale constructor;
see Obtaining the Locale Name for a Request. For example:

1 from babel.core import Locale
2 from pyramid.i18n import get_locale_name
3

4 def aview(request):
5 locale_name = get_locale_name(request)
6 locale = Locale(locale_name)

19.6 Chameleon Template Support for Translation Strings

When a translation string is used as the subject of textual rendering by a Chameleon template renderer,
it will automatically be translated to the requesting user’s language if a suitable translation exists. This is
true of both the ZPT and text variants of the Chameleon template renderers.

For example, in a Chameleon ZPT template, the translation string represented by
“some_translation_string” in each example below will go through translation before being rendered:

1

1

1 ${some_translation_string}

1 <a tal:attributes="href some_translation_string">Click here

212

http://babel.edgewall.org/wiki/ApiDocs/babel.core#babel.core:Locale

19.7. MAKO PYRAMID I18N SUPPORT

The features represented by attributes of the i18n namespace of Chameleon will also consult the Pyramid
translations. See http://chameleon.repoze.org/docs/latest/i18n.html#the-i18n-namespace.

Unlike when Chameleon is used outside of Pyramid, when it is used within Pyramid, it does not
support use of the zope.i18n translation framework. Applications which use Pyramid should use
the features documented in this chapter rather than zope.i18n.

Third party Pyramid template renderers might not provide this support out of the box and may need special
code to do an equivalent. For those, you can always use the more manual translation facility described in
Performing a Translation.

19.7 Mako Pyramid I18N Support

There exists a recipe within the Pyramid Cookbook named “Mako Internationalization” which explains
how to add idiomatic I18N support to Mako templates.

19.8 Localization-Related Deployment Settings

A Pyramid application will have a pyramid.default_locale_name setting. This value represents
the default locale name used when the locale negotiator returns None. Pass it to the Configurator
constructor at startup time:

1 from pyramid.config import Configurator
2 config = Configurator(settings={’pyramid.default_locale_name’:’de’})

You may alternately supply a pyramid.default_locale_name via an application’s Paster .ini
file:

1 [app:main]
2 use = egg:MyProject
3 pyramid.reload_templates = true
4 pyramid.debug_authorization = false
5 pyramid.debug_notfound = false
6 pyramid.default_locale_name = de

If this value is not supplied via the Configurator constructor or via a Paste config file, it will default to en.

If this setting is supplied within the Pyramid application .ini file, it will be available as a settings key:

213

http://chameleon.repoze.org/docs/latest/i18n.html#the-i18n-namespace

19. INTERNATIONALIZATION AND LOCALIZATION

1 from pyramid.threadlocal import get_current_registry
2 settings = get_current_registry().settings
3 default_locale_name = settings[’pyramid.default_locale_name’]

19.9 “Detecting” Available Languages

Other systems provide an API that returns the set of “available languages” as indicated by the union of all
languages in all translation directories on disk at the time of the call to the API.

It is by design that Pyramid doesn’t supply such an API. Instead, the application itself is responsible for
knowing the “available languages”. The rationale is this: any particular application deployment must
always know which languages it should be translatable to anyway, regardless of which translation files
are on disk.

Here’s why: it’s not a given that because translations exist in a particular language within the registered
set of translation directories that this particular deployment wants to allow translation to that language.
For example, some translations may exist but they may be incomplete or incorrect. Or there may be
translations to a language but not for all translation domains.

Any nontrivial application deployment will always need to be able to selectively choose to allow only
some languages even if that set of languages is smaller than all those detected within registered trans-
lation directories. The easiest way to allow for this is to make the application entirely responsible for
knowing which languages are allowed to be translated to instead of relying on the framework to divine
this information from translation directory file info.

You can set up a system to allow a deployer to select available languages based on convention by using
the pyramid.settings mechanism:

Allow a deployer to modify your application’s PasteDeploy .ini file:

1 [app:main]
2 use = egg:MyProject
3 # ...
4 available_languages = fr de en ru

Then as a part of the code of a custom locale negotiator:

214

19.10. ACTIVATING TRANSLATION

1 from pyramid.threadlocal import get_current_registry
2 settings = get_current_registry().settings
3 languages = settings[’available_languages’].split()

This is only a suggestion. You can create your own “available languages” configuration scheme as neces-
sary.

19.10 Activating Translation

By default, a Pyramid application performs no translation. To turn translation on, you must:

• add at least one translation directory to your application.

• ensure that your application sets the locale name correctly.

19.10.1 Adding a Translation Directory

gettext is the underlying machinery behind the Pyramid translation machinery. A translation directory is
a directory organized to be useful to gettext. A translation directory usually includes a listing of language
directories, each of which itself includes an LC_MESSAGES directory. Each LC_MESSAGES directory
should contain one or more .mo files. Each .mo file represents a message catalog, which is used to
provide translations to your application.

Adding a translation directory registers all of its constituent message catalog files within your Pyramid
application to be available to use for translation services. This includes all of the .mo files found within
all LC_MESSAGES directories within each locale directory in the translation directory.

You can add a translation directory imperatively by using the
pyramid.config.Configurator.add_translation_dirs() during application startup.
For example:

1 from pyramid.config import Configurator
2 config.add_translation_dirs(’my.application:locale/’,
3 ’another.application:locale/’)

A message catalog in a translation directory added via add_translation_dirs() will be merged
into translations from a message catalog added earlier if both translation directories contain translations
for the same locale and translation domain.

215

19. INTERNATIONALIZATION AND LOCALIZATION

19.10.2 Setting the Locale

When the default locale negotiator (see The Default Locale Negotiator) is in use, you can inform Pyramid
of the current locale name by doing any of these things before any translations need to be performed:

• Set the _LOCALE_ attribute of the request to a valid locale name (usually directly within view
code). E.g. request._LOCALE_ = ’de’.

• Ensure that a valid locale name value is in the request.params dictionary under the
key named _LOCALE_. This is usually the result of passing a _LOCALE_ value in the
query string or in the body of a form post associated with a request. For example, visiting
http://my.application?_LOCALE_=de.

• Ensure that a valid locale name value is in the request.cookies dictionary under the key
named _LOCALE_. This is usually the result of setting a _LOCALE_ cookie in a prior response,
e.g. response.set_cookie(’_LOCALE_’, ’de’).

If this locale negotiation scheme is inappropriate for a particular application, you can configure
a custom locale negotiator function into that application as required. See Using a Custom Locale
Negotiator.

19.11 Locale Negotiators

A locale negotiator informs the operation of a localizer by telling it what locale name is re-
lated to a particular request. A locale negotiator is a bit of code which accepts a request and
which returns a locale name. It is consulted when pyramid.i18n.Localizer.translate()
or pyramid.i18n.Localizer.pluralize() is invoked. It is also consulted when
get_locale_name() or negotiate_locale_name() is invoked.

19.11.1 The Default Locale Negotiator

Most applications can make use of the default locale negotiator, which requires no additional coding or
configuration.

The default locale negotiator implementation named default_locale_negotiator uses the fol-
lowing set of steps to dermine the locale name.

216

19.11. LOCALE NEGOTIATORS

• First, the negotiator looks for the _LOCALE_ attribute of the request object (possibly set directly
by view code or by a listener for an event).

• Then it looks for the request.params[’_LOCALE_’] value.

• Then it looks for the request.cookies[’_LOCALE_’] value.

• If no locale can be found via the request, it falls back to using the default locale name (see
Localization-Related Deployment Settings).

• Finally, if the default locale name is not explicitly set, it uses the locale name en.

19.11.2 Using a Custom Locale Negotiator

Locale negotiation is sometimes policy-laden and complex. If the (simple) default locale negotiation
scheme described in Activating Translation is inappropriate for your application, you may create and a
special locale negotiator. Subsequently you may override the default locale negotiator by adding your
newly created locale negotiator to your application’s configuration.

A locale negotiator is simply a callable which accepts a request and returns a single locale name or None
if no locale can be determined.

Here’s an implementation of a simple locale negotiator:

1 def my_locale_negotiator(request):
2 locale_name = request.params.get(’my_locale’)
3 return locale_name

If a locale negotiator returns None, it signifies to Pyramid that the default application locale name should
be used.

You may add your newly created locale negotiator to your application’s configuration by passing
an object which can act as the negotiator (or a dotted Python name referring to the object) as the
locale_negotiator argument of the Configurator instance during application startup. For ex-
ample:

1 from pyramid.config import Configurator
2 config = Configurator(locale_negotiator=my_locale_negotiator)

Alternately, use the pyramid.config.Configurator.set_locale_negotiator()method.

For example:

217

19. INTERNATIONALIZATION AND LOCALIZATION

1 from pyramid.config import Configurator
2 config = Configurator()
3 config.set_locale_negotiator(my_locale_negotiator)

218

CHAPTER

TWENTY

VIRTUAL HOSTING

“Virtual hosting” is, loosely, the act of serving a Pyramid application or a portion of a Pyramid application
under a URL space that it does not “naturally” inhabit.

Pyramid provides facilities for serving an application under a URL “prefix”, as well as serving a portion
of a traversal based application under a root URL.

20.1 Hosting an Application Under a URL Prefix

Pyramid supports a common form of virtual hosting whereby you can host a Pyramid application as a
“subset” of some other site (e.g. under http://example.com/mypyramidapplication/ as
opposed to under http://example.com/).

If you use a “pure Python” environment, this functionality is provided by Paste’s urlmap “composite”
WSGI application. Alternately, you can use mod_wsgi to serve your application, which handles this
virtual hosting translation for you “under the hood”.

If you use the urlmap composite application “in front” of a Pyramid application or if you use mod_wsgi
to serve up a Pyramid application, nothing special needs to be done within the application for URLs to
be generated that contain a prefix. paste.urlmap and mod_wsgi manipulate the WSGI environment
in such a way that the PATH_INFO and SCRIPT_NAME variables are correct for some given prefix.

Here’s an example of a PasteDeploy configuration snippet that includes a urlmap composite.

219

http://pythonpaste.org/modules/urlmap.html

20. VIRTUAL HOSTING

1 [app:mypyramidapp]
2 use = egg:mypyramidapp
3

4 [composite:main]
5 use = egg:Paste#urlmap
6 /pyramidapp = mypyramidapp

This “roots” the Pyramid application at the prefix /pyramidapp and serves up the composite as the
“main” application in the file.

If you’re using an Apache server to proxy to a Paste urlmap composite, you may have to use
the ProxyPreserveHost directive to pass the original HTTP_HOST header along to the application, so
URLs get generated properly. As of this writing the urlmap composite does not seem to respect
the HTTP_X_FORWARDED_HOST parameter, which will contain the original host header even if
HTTP_HOST is incorrect.

If you use mod_wsgi, you do not need to use a composite application in your .ini file. The
WSGIScriptAlias configuration setting in a mod_wsgi configuration does the work for you:

1 WSGIScriptAlias /pyramidapp /Users/chrism/projects/modwsgi/env/pyramid.wsgi

In the above configuration, we root a Pyramid application at /pyramidapp within the Apache configu-
ration.

20.2 Virtual Root Support

Pyramid also supports “virtual roots”, which can be used in traversal -based (but not URL dispatch -based)
applications.

Virtual root support is useful when you’d like to host some resource in a Pyramid resource tree as an appli-
cation under a URL pathname that does not include the resource path itself. For example, you might want
to serve the object at the traversal path /cms as an application reachable via http://example.com/
(as opposed to http://example.com/cms).

To specify a virtual root, cause an environment variable to be inserted into the WSGI environ named
HTTP_X_VHM_ROOT with a value that is the absolute pathname to the resource object in the re-
source tree that should behave as the “root” resource. As a result, the traversal machinery will re-
spect this value during traversal (prepending it to the PATH_INFO before traversal starts), and the

220

http://httpd.apache.org/docs/2.2/mod/mod_proxy.html#proxypreservehost

20.3. FURTHER DOCUMENTATION AND EXAMPLES

pyramid.request.Request.resource_url() API will generate the “correct” virtually-rooted
URLs.

An example of an Apache mod_proxy configuration that will host the /cms subobject as
http://www.example.com/ using this facility is below:

1 NameVirtualHost *:80
2

3 <VirtualHost *:80>
4 ServerName www.example.com
5 RewriteEngine On
6 RewriteRule ^/(.*) http://127.0.0.1:6543/$1 [L,P]
7 ProxyPreserveHost on
8 RequestHeader add X-Vhm-Root /cms
9 </VirtualHost>

Use of the RequestHeader directive requires that the Apache mod_headers module be avail-
able in the Apache environment you’re using.

For a Pyramid application running under mod_wsgi, the same can be achieved using SetEnv:

1 <Location />
2 SetEnv HTTP_X_VHM_ROOT /cms
3 </Location>

Setting a virtual root has no effect when using an application based on URL dispatch.

20.3 Further Documentation and Examples

The API documentation in pyramid.traversal documents a pyramid.traversal.virtual_root()
API. When called, it returns the virtual root object (or the physical root object if no virtual root has been
specified).

Running a Pyramid Application under mod_wsgi has detailed information about using mod_wsgi to serve
Pyramid applications.

221

http://httpd.apache.org/docs/2.2/mod/mod_headers.html

20. VIRTUAL HOSTING

222

CHAPTER

TWENTYONE

UNIT, INTEGRATION, AND
FUNCTIONAL TESTING

Unit testing is, not surprisingly, the act of testing a “unit” in your application. In this context, a “unit” is
often a function or a method of a class instance. The unit is also referred to as a “unit under test”.

The goal of a single unit test is to test only some permutation of the “unit under test”. If you write a unit
test that aims to verify the result of a particular codepath through a Python function, you need only be
concerned about testing the code that lives in the function body itself. If the function accepts a parameter
that represents a complex application “domain object” (such as a resource, a database connection, or an
SMTP server), the argument provided to this function during a unit test need not be and likely should
not be a “real” implementation object. For example, although a particular function implementation may
accept an argument that represents an SMTP server object, and the function may call a method of this
object when the system is operating normally that would result in an email being sent, a unit test of this
codepath of the function does not need to test that an email is actually sent. It just needs to make sure
that the function calls the method of the object provided as an argument that would send an email if the
argument happened to be the “real” implementation of an SMTP server object.

An integration test, on the other hand, is a different form of testing in which the interaction between two
or more “units” is explicitly tested. Integration tests verify that the components of your application work
together. You might make sure that an email was actually sent in an integration test.

A functional test is a form of integration test in which the application is run “literally”. You would have
to make sure that an email was actually sent in a functional test, because it tests your code end to end.

It is often considered best practice to write each type of tests for any given codebase. Unit testing often
provides the opportunity to obtain better “coverage”: it’s usually possible to supply a unit under test
with arguments and/or an environment which causes all of its potential codepaths to be executed. This is

223

21. UNIT, INTEGRATION, AND FUNCTIONAL TESTING

usually not as easy to do with a set of integration or functional tests, but integration and functional testing
provides a measure of assurance that your “units” work together, as they will be expected to when your
application is run in production.

The suggested mechanism for unit and integration testing of a Pyramid application is the Python
unittest module. Although this module is named unittest, it is actually capable of driving both
unit and integration tests. A good unittest tutorial is available within Dive Into Python by Mark
Pilgrim.

Pyramid provides a number of facilities that make unit, integration, and functional tests easier to write.
The facilities become particularly useful when your code calls into Pyramid -related framework functions.

21.1 Test Set Up and Tear Down

Pyramid uses a “global” (actually thread local) data structure to hold on to two
items: the current request and the current application registry. These data struc-
tures are available via the pyramid.threadlocal.get_current_request() and
pyramid.threadlocal.get_current_registry() functions, respectively. See Thread
Locals for information about these functions and the data structures they return.

If your code uses these get_current_* functions or calls Pyramid code which uses
get_current_* functions, you will need to call pyramid.testing.setUp() in your test setup
and you will need to call pyramid.testing.tearDown() in your test teardown. setUp() pushes
a registry onto the thread local stack, which makes the get_current_* functions work. It returns a
Configurator object which can be used to perform extra configuration required by the code under test.
tearDown() pops the thread local stack.

Normally when a Configurator is used directly with the main block of a Pyramid application, it
defers performing any “real work” until its .commit method is called (often implicitly by the
pyramid.config.Configurator.make_wsgi_app() method). The Configurator returned by
setUp() is an autocommitting Configurator, however, which performs all actions implied by meth-
ods called on it immediately. This is more convenient for unit-testing purposes than needing to call
pyramid.config.Configurator.commit() in each test after adding extra configuration state-
ments.

The use of the setUp() and tearDown() functions allows you to supply each unit test method in a
test case with an environment that has an isolated registry and an isolated request for the duration of a
single test. Here’s an example of using this feature:

224

http://diveintopython.org/unit_testing/index.html

21.1. TEST SET UP AND TEAR DOWN

1 import unittest
2 from pyramid import testing
3

4 class MyTest(unittest.TestCase):
5 def setUp(self):
6 self.config = testing.setUp()
7

8 def tearDown(self):
9 testing.tearDown()

The above will make sure that get_current_registry() called within a test case method of
MyTest will return the application registry associated with the config Configurator instance. Each
test case method attached to MyTest will use an isolated registry.

The setUp() and tearDown() functions accepts various arguments that influence the environment
of the test. See the pyramid.testing chapter for information about the extra arguments supported by these
functions.

If you also want to make get_current_request() return something other than None during the
course of a single test, you can pass a request object into the pyramid.testing.setUp() within
the setUp method of your test:

1 import unittest
2 from pyramid import testing
3

4 class MyTest(unittest.TestCase):
5 def setUp(self):
6 request = testing.DummyRequest()
7 self.config = testing.setUp(request=request)
8

9 def tearDown(self):
10 testing.tearDown()

If you pass a request object into pyramid.testing.setUp() within your test case’s
setUp, any test method attached to the MyTest test case that directly or indirectly calls
get_current_request() will receive the request object. Otherwise, during testing,
get_current_request() will return None. We use a “dummy” request implementation supplied
by pyramid.testing.DummyRequest because it’s easier to construct than a “real” Pyramid request
object.

225

21. UNIT, INTEGRATION, AND FUNCTIONAL TESTING

21.1.1 What?

Thread local data structures are always a bit confusing, especially when they’re used by frameworks.
Sorry. So here’s a rule of thumb: if you don’t know whether you’re calling code that uses the
get_current_registry() or get_current_request() functions, or you don’t care about
any of this, but you still want to write test code, just always call pyramid.testing.setUp() in
your test’s setUp method and pyramid.testing.tearDown() in your tests’ tearDown method.
This won’t really hurt anything if the application you’re testing does not call any get_current* func-
tion.

21.2 Using the Configurator and pyramid.testingAPIs in
Unit Tests

The Configurator API and the pyramid.testing module provide a number of functions which
can be used during unit testing. These functions make configuration declaration calls to the current
application registry, but typically register a “stub” or “dummy” feature in place of the “real” feature that
the code would call if it was being run normally.

For example, let’s imagine you want to unit test a Pyramid view function.

1 from pyramid.security import has_permission
2 from pyramid.httpexceptions import HTTPForbidden
3

4 def view_fn(request):
5 if not has_permission(’edit’, request.context, request):
6 raise HTTPForbidden
7 return {’greeting’:’hello’}

Without doing anything special during a unit test, the call to has_permission() in this view func-
tion will always return a True value. When a Pyramid application starts normally, it will populate a
application registry using configuration declaration calls made against a Configurator. But if this appli-
cation registry is not created and populated (e.g. by initializing the configurator with an authorization
policy), like when you invoke application code via a unit test, Pyramid API functions will tend to either
fail or return default results. So how do you test the branch of the code in this view function that raises
HTTPForbidden?

The testing API provided by Pyramid allows you to simulate various application registry registrations for
use under a unit testing framework without needing to invoke the actual application configuration implied
by its main function. For example, if you wanted to test the above view_fn (assuming it lived in the
package named my.package), you could write a unittest.TestCase that used the testing API.

226

21.2. USING THE CONFIGURATOR AND PYRAMID.TESTING APIS IN UNIT TESTS

1 import unittest
2 from pyramid import testing
3

4 class MyTest(unittest.TestCase):
5 def setUp(self):
6 self.config = testing.setUp()
7

8 def tearDown(self):
9 testing.tearDown()

10

11 def test_view_fn_forbidden(self):
12 from pyramid.httpexceptions import HTTPForbidden
13 from my.package import view_fn
14 self.config.testing_securitypolicy(userid=’hank’,
15 permissive=False)
16 request = testing.DummyRequest()
17 request.context = testing.DummyResource()
18 self.assertRaises(HTTPForbidden, view_fn, request)
19

20 def test_view_fn_allowed(self):
21 from my.package import view_fn
22 self.config.testing_securitypolicy(userid=’hank’,
23 permissive=True)
24 request = testing.DummyRequest()
25 request.context = testing.DummyResource()
26 response = view_fn(request)
27 self.assertEqual(response, {’greeting’:’hello’})

In the above example, we create a MyTest test case that inherits from unittest.TestCase. If it’s
in our Pyramid application, it will be found when setup.py test is run. It has two test methods.

The first test method, test_view_fn_forbidden tests the view_fnwhen the authentication policy
forbids the current user the edit permission. Its third line registers a “dummy” “non-permissive” autho-
rization policy using the testing_securitypolicy() method, which is a special helper method
for unit testing.

We then create a pyramid.testing.DummyRequest object which simulates a WebOb request ob-
ject API. A pyramid.testing.DummyRequest is a request object that requires less setup than a
“real” Pyramid request. We call the function being tested with the manufactured request. When the
function is called, pyramid.security.has_permission() will call the “dummy” authentica-
tion policy we’ve registered through testing_securitypolicy(), which denies access. We check
that the view function raises a HTTPForbidden error.

The second test method, named test_view_fn_allowed tests the alternate case, where the authen-
tication policy allows access. Notice that we pass different values to testing_securitypolicy()
to obtain this result. We assert at the end of this that the view function returns a value.

227

21. UNIT, INTEGRATION, AND FUNCTIONAL TESTING

Note that the test calls the pyramid.testing.setUp() function in its setUp method and the
pyramid.testing.tearDown() function in its tearDown method. We assign the result of
pyramid.testing.setUp() as config on the unittest class. This is a Configurator object and all
methods of the configurator can be called as necessary within tests. If you use any of the Configurator
APIs during testing, be sure to use this pattern in your test case’s setUp and tearDown; these methods
make sure you’re using a “fresh” application registry per test run.

See the pyramid.testing chapter for the entire Pyramid -specific testing API. This chapter describes APIs
for registering a security policy, registering resources at paths, registering event listeners, registering views
and view permissions, and classes representing “dummy” implementations of a request and a resource.

See also the various methods of the Configurator documented in pyramid.config that begin with the
testing_ prefix.

21.3 Creating Integration Tests

In Pyramid, a unit test typically relies on “mock” or “dummy” implementations to give the code under
test only enough context to run.

“Integration testing” implies another sort of testing. In the context of a Pyramid, integration test, the test
logic tests the functionality of some code and its integration with the rest of the Pyramid framework.

In Pyramid applications that are plugins to Pyramid, you can create an integration test by including
it’s includeme function via pyramid.config.Configurator.include() in the test’s setup
code. This causes the entire Pyramid environment to be set up and torn down as if your application was
running “for real”. This is a heavy-hammer way of making sure that your tests have enough context to
run properly, and it tests your code’s integration with the rest of Pyramid.

Let’s demonstrate this by showing an integration test for a view. The below test assumes that your appli-
cation’s package name is myapp, and that there is a views module in the app with a function with the
name my_view in it that returns the response ‘Welcome to this application’ after accessing some values
that require a fully set up environment.

1 import unittest
2

3 from pyramid import testing
4

5 class ViewIntegrationTests(unittest.TestCase):
6 def setUp(self):
7 """ This sets up the application registry with the
8 registrations your application declares in its ‘‘includeme‘‘

228

21.4. CREATING FUNCTIONAL TESTS

9 function.
10 """
11 import myapp
12 self.config = testing.setUp()
13 self.config.include(’myapp’)
14

15 def tearDown(self):
16 """ Clear out the application registry """
17 testing.tearDown()
18

19 def test_my_view(self):
20 from myapp.views import my_view
21 request = testing.DummyRequest()
22 result = my_view(request)
23 self.assertEqual(result.status, ’200 OK’)
24 body = result.app_iter[0]
25 self.failUnless(’Welcome to’ in body)
26 self.assertEqual(len(result.headerlist), 2)
27 self.assertEqual(result.headerlist[0],
28 (’Content-Type’, ’text/html; charset=UTF-8’))
29 self.assertEqual(result.headerlist[1], (’Content-Length’,
30 str(len(body))))

Unless you cannot avoid it, you should prefer writing unit tests that use the Configurator API to set
up the right “mock” registrations rather than creating an integration test. Unit tests will run faster (because
they do less for each test) and the result of a unit test is usually easier to make assertions about.

21.4 Creating Functional Tests

Functional tests test your literal application.

The below test assumes that your application’s package name is myapp, and that there is view that returns
an HTML body when the root URL is invoked. It further assumes that you’ve added a tests_require
dependency on the WebTest package within your setup.py file. WebTest is a functional testing pack-
age written by Ian Bicking.

1 import unittest
2

3 class FunctionalTests(unittest.TestCase):
4 def setUp(self):
5 from myapp import main

229

21. UNIT, INTEGRATION, AND FUNCTIONAL TESTING

6 app = main({})
7 from webtest import TestApp
8 self.testapp = TestApp(app)
9

10 def test_root(self):
11 res = self.testapp.get(’/’, status=200)
12 self.failUnless(’Pyramid’ in res.body)

When this test is run, each test creates a “real” WSGI application using the main function in your
myapp.__init__ module and uses WebTest to wrap that WSGI application. It assigns the result to
self.testapp. In the test named test_root, we use the testapp’s get method to invoke the root
URL. We then assert that the returned HTML has the string Pyramid in it.

See the WebTest documentation for further information about the methods available to a
webtest.TestApp instance.

230

CHAPTER

TWENTYTWO

RESOURCES

A resource is an object that represents a “place” in a tree related to your application. Every Pyramid
application has at least one resource object: the root resource. Even if you don’t define a root resource
manually, a default one is created for you. The root resource is the root of a resource tree. A resource tree
is a set of nested dictionary-like objects which you can use to represent your website’s structure.

In an application which uses traversal to map URLs to code, the resource tree structure is used heavily to
map each URL to a view callable. When traversal is used, Pyramid will walk through the resource tree
by traversing through its nested dictionary structure in order to find a context resource. Once a context
resource is found, the context resource and data in the request will be used to find a view callable.

In an application which uses URL dispatch, the resource tree is only used indirectly, and is often “invis-
ible” to the developer. In URL dispatch applications, the resource “tree” is often composed of only the
root resource by itself. This root resource sometimes has security declarations attached to it, but is not
required to have any. In general, the resource tree is much less important in applications that use URL
dispatch than applications that use traversal.

In “Zope-like” Pyramid applications, resource objects also often store data persistently, and offer methods
related to mutating that persistent data. In these kinds of applications, resources not only represent the
site structure of your website, but they become the domain model of the application.

Also:

• The context and containment predicate arguments to add_view() (or a
view_config() decorator) reference a resource class or resource interface.

• A root factory returns a resource.

• A resource is exposed to view code as the context of a view.

• Various helpful Pyramid API methods expect a resource as an argument (e.g. resource_url()
and others).

231

22. RESOURCES

22.1 Defining a Resource Tree

When traversal is used (as opposed to a purely url dispatch based application), Pyramid expects to be
able to traverse a tree composed of resources (the resource tree). Traversal begins at a root resource,
and descends into the tree recursively, trying each resource’s __getitem__ method to resolve a path
segment to another resource object. Pyramid imposes the following policy on resource instances in the
tree:

• A container resource (a resource which contains other resources) must supply a __getitem__
method which is willing to resolve a unicode name to a sub-resource. If a sub-resource by a partic-
ular name does not exist in a container resource, __getitem__ method of the container resource
must raise a KeyError. If a sub-resource by that name does exist, the container’s __getitem__
should return the sub-resource.

• Leaf resources, which do not contain other resources, must not implement a __getitem__, or if
they do, their __getitem__ method must always raise a KeyError.

See Traversal for more information about how traversal works against resource instances.

Here’s a sample resource tree, represented by a variable named root:

1 class Resource(dict):
2 pass
3

4 root = Resource({’a’:Resource({’b’:Resource({’c’:Resource()})})})

The resource tree we’ve created above is represented by a dictionary-like root object which has a single
child named ’a’. ’a’ has a single child named ’b’, and ’b’ has a single child named ’c’, which has
no children. It is therefore possible to access the ’c’ leaf resource like so:

1 root[’a’][’b’][’c’]

If you returned the above root object from a root factory, the path /a/b/c would find the ’c’ object
in the resource tree as the result of traversal.

In this example, each of the resources in the tree is of the same class. This is not a requirement. Resource
elements in the tree can be of any type. We used a single class to represent all resources in the tree for the
sake of simplicity, but in a “real” app, the resources in the tree can be arbitrary.

Although the example tree above can service a traversal, the resource instances in the above example
are not aware of location, so their utility in a “real” application is limited. To make best use of built-in
Pyramid API facilities, your resources should be “location-aware”. The next section details how to make
resources location-aware.

232

22.2. LOCATION-AWARE RESOURCES

22.2 Location-Aware Resources

In order for certain Pyramid location, security, URL-generation, and traversal APIs to work properly
against the resources in a resource tree, all resources in the tree must be location -aware. This means they
must have two attributes: __parent__ and __name__.

The __parent__ attribute of a location-aware resource should be a reference to the resource’s parent
resource instance in the tree. The __name__ attribute should be the name with which a resource’s parent
refers to the resource via __getitem__.

The __parent__ of the root resource should be None and its __name__ should be the empty string.
For instance:

1 class MyRootResource(object):
2 __name__ = ’’
3 __parent__ = None

A resource returned from the root resource’s __getitem__ method should have a __parent__ at-
tribute that is a reference to the root resource, and its __name__ attribute should match the name by
which it is reachable via the root resource’s __getitem__. A container resource within the root re-
source should have a __getitem__ that returns resources with a __parent__ attribute that points at
the container, and these subobjects should have a __name__ attribute that matches the name by which
they are retrieved from the container via __getitem__. This pattern continues recursively “up” the tree
from the root.

The __parent__ attributes of each resource form a linked list that points “downwards” toward the root.
This is analogous to the .. entry in filesystem directories. If you follow the __parent__ values from
any resource in the resource tree, you will eventually come to the root resource, just like if you keep
executing the cd .. filesystem command, eventually you will reach the filesystem root directory.

If your root resource has a __name__ argument that is not None or the empty string, URLs
returned by the resource_url() function and paths generated by the resource_path() and
resource_path_tuple() APIs will be generated improperly. The value of __name__ will be
prepended to every path and URL generated (as opposed to a single leading slash or empty tuple
element).

233

22. RESOURCES

Using pyramid_traversalwrapper

If you’d rather not manage the __name__ and __parent__ attributes of your resources “by
hand”, an add-on package named pyramid_traversalwrapper can help.
In order to use this helper feature, you must first install the pyramid_traversalwrapper
package (available via PyPI), then register its ModelGraphTraverser as the traversal policy,
rather than the default Pyramid traverser. The package contains instructions for doing so.
Once Pyramid is configured with this feature, you will no longer need to manage the __parent__
and __name__ attributes on resource objects “by hand”. Instead, as necessary, during traversal
Pyramid will wrap each resource (even the root resource) in a LocationProxywhich will dynam-
ically assign a __name__ and a __parent__ to the traversed resource (based on the last traversed
resource and the name supplied to __getitem__). The root resource will have a __name__ at-
tribute of None and a __parent__ attribute of None.

Applications which use tree-walking Pyramid APIs require location-aware resources.
These APIs include (but are not limited to) resource_url(), find_resource(),
find_root(), find_interface(), resource_path(), resource_path_tuple(),
or traverse(), virtual_root(), and (usually) has_permission() and
principals_allowed_by_permission().

In general, since so much Pyramid infrastructure depends on location-aware resources, it’s a good idea to
make each resource in your tree location-aware.

22.3 Generating The URL Of A Resource

If your resources are location aware, you can use the pyramid.request.Request.resource_url()
API to generate a URL for the resource. This URL will use the resource’s position in the parent tree to
create a resource path, and it will prefix the path with the current application URL to form a fully-qualified
URL with the scheme, host, port, and path. You can also pass extra arguments to resource_url() to
influence the generated URL.

The simplest call to resource_url() looks like this:

1 url = request.resource_url(resource, request)

The request in the above example is an instance of a Pyramid request object.

If the resource referred to as resource in the above example was the root resource, and the
host that was used to contact the server was example.com, the URL generated would be

234

22.3. GENERATING THE URL OF A RESOURCE

http://example.com/. However, if the resource was a child of the root resource named a, the
generated URL would be http://example.com/a/.

A slash is appended to all resource URLs when resource_url() is used to generate them in this
simple manner, because resources are “places” in the hierarchy, and URLs are meant to be clicked on to
be visited. Relative URLs that you include on HTML pages rendered as the result of the default view of
a resource are more apt to be relative to these resources than relative to their parent.

You can also pass extra elements to resource_url():

1 url = request.resource_url(resource, ’foo’, ’bar’)

If the resource referred to as resource in the above example was the root resource, and
the host that was used to contact the server was example.com, the URL generated would
be http://example.com/foo/bar. Any number of extra elements can be passed to
resource_url() as extra positional arguments. When extra elements are passed, they are appended
to the resource’s URL. A slash is not appended to the final segment when elements are passed.

You can also pass a query string:

1 url = request.resource_url(resource, query={’a’:’1’})

If the resource referred to as resource in the above example was the root resource, and the
host that was used to contact the server was example.com, the URL generated would be
http://example.com/?a=1.

When a virtual root is active, the URL generated by resource_url() for a resource may be “shorter”
than its physical tree path. See Virtual Root Support for more information about virtually rooting a
resource.

For more information about generating resource URLs, see the documentation for
pyramid.request.Request.resource_url().

22.3.1 Overriding Resource URL Generation

If a resource object implements a __resource_url__ method, this method will be called when
resource_url() is called to generate a URL for the resource, overriding the default URL returned
for the resource by resource_url().

The __resource_url__ hook is passed two arguments: request and info. request is the
request object passed to resource_url(). info is a dictionary with two keys:

235

22. RESOURCES

physical_path The “physical path” computed for the resource, as defined by
pyramid.traversal.resource_path(resource).

virtual_path The “virtual path” computed for the resource, as defined by Virtual Root Support. This
will be identical to the physical path if virtual rooting is not enabled.

The __resource_url__ method of a resource should return a string representing a URL. If it cannot
override the default, it should return None. If it returns None, the default URL will be returned.

Here’s an example __resource_url__ method.

1 class Resource(object):
2 def __resource_url__(self, request, info):
3 return request.application_url + info[’virtual_path’]

The above example actually just generates and returns the default URL, which would have been what was
returned anyway, but your code can perform arbitrary logic as necessary. For example, your code may
wish to override the hostname or port number of the generated URL.

Note that the URL generated by __resource_url__ should be fully qualified, should end in a slash,
and should not contain any query string or anchor elements (only path elements) to work best with
resource_url().

22.4 Generating the Path To a Resource

pyramid.traversal.resource_path() returns a string object representing the absolute phys-
ical path of the resource object based on its position in the resource tree. Each segment of the path is
separated with a slash character.

1 from pyramid.traversal import resource_path
2 url = resource_path(resource)

If resource in the example above was accessible in the tree as root[’a’][’b’], the above example
would generate the string /a/b.

Any positional arguments passed in to resource_path() will be appended as path segments to the
end of the resource path.

236

22.5. FINDING A RESOURCE BY PATH

1 from pyramid.traversal import resource_path
2 url = resource_path(resource, ’foo’, ’bar’)

If resource in the example above was accessible in the tree as root[’a’][’b’], the above example
would generate the string /a/b/foo/bar.

The resource passed in must be location-aware.

The presence or absence of a virtual root has no impact on the behavior of resource_path().

22.5 Finding a Resource by Path

If you have a string path to a resource, you can grab the resource from that place in the application’s
resource tree using pyramid.traversal.find_resource().

You can resolve an absolute path by passing a string prefixed with a / as the path argument:

1 from pyramid.traversal import find_resource
2 url = find_resource(anyresource, ’/path’)

Or you can resolve a path relative to the resource you pass in by passing a string that isn’t prefixed by /:

1 from pyramid.traversal import find_resource
2 url = find_resource(anyresource, ’path’)

Often the paths you pass to find_resource() are generated by the resource_path()API. These
APIs are “mirrors” of each other.

If the path cannot be resolved when calling find_resource() (if the respective resource in the tree
does not exist), a KeyError will be raised.

See the pyramid.traversal.find_resource() documentation for more information about re-
solving a path to a resource.

22.6 Obtaining the Lineage of a Resource

pyramid.location.lineage() returns a generator representing the lineage of the location aware
resource object.

The lineage() function returns the resource it is passed, then each parent of the resource, in order. For
example, if the resource tree is composed like so:

237

22. RESOURCES

1 class Thing(object): pass
2

3 thing1 = Thing()
4 thing2 = Thing()
5 thing2.__parent__ = thing1

Calling lineage(thing2) will return a generator. When we turn it into a list, we will get:

list(lineage(thing2))
[<Thing object at thing2>, <Thing object at thing1>]

The generator returned by lineage() first returns the resource it was passed unconditionally.
Then, if the resource supplied a __parent__ attribute, it returns the resource represented by
resource.__parent__. If that resource has a __parent__ attribute, return that resource’s parent,
and so on, until the resource being inspected either has no __parent__ attribute or has a __parent__
attribute of None.

See the documentation for pyramid.location.lineage() for more information.

22.7 Determining if a Resource is In The Lineage of Another
Resource

Use the pyramid.location.inside() function to determine if one resource is in the lineage of
another resource.

For example, if the resource tree is:

1 class Thing(object): pass
2

3 a = Thing()
4 b = Thing()
5 b.__parent__ = a

Calling inside(b, a) will return True, because b has a lineage that includes a. However, calling
inside(a, b) will return False because a does not have a lineage that includes b.

The argument list for inside() is (resource1, resource2). resource1 is ‘inside’
resource2 if resource2 is a lineage ancestor of resource1. It is a lineage ancestor if its par-
ent (or one of its parent’s parents, etc.) is an ancestor.

See pyramid.location.inside() for more information.

238

22.8. FINDING THE ROOT RESOURCE

22.8 Finding the Root Resource

Use the pyramid.traversal.find_root() API to find the root resource. The root resource is
the root resource of the resource tree. The API accepts a single argument: resource. This is a resource
that is location aware. It can be any resource in the tree for which you want to find the root.

For example, if the resource tree is:

1 class Thing(object): pass
2

3 a = Thing()
4 b = Thing()
5 b.__parent__ = a

Calling find_root(b) will return a.

The root resource is also available as request.root within view callable code.

The presence or absence of a virtual root has no impact on the behavior of find_root(). The root
object returned is always the physical root object.

22.9 Resources Which Implement Interfaces

Resources can optionally be made to implement an interface. An interface is used to tag a
resource object with a “type” that can later be referred to within view configuration and by
pyramid.traversal.find_interface().

Specifying an interface instead of a class as the context or containment predicate arguments within
view configuration statements makes it possible to use a single view callable for more than one class of
resource object. If your application is simple enough that you see no reason to want to do this, you can
skip reading this section of the chapter.

For example, here’s some code which describes a blog entry which also declares that the blog entry
implements an interface.

239

22. RESOURCES

1 import datetime
2 from zope.interface import implements
3 from zope.interface import Interface
4

5 class IBlogEntry(Interface):
6 pass
7

8 class BlogEntry(object):
9 implements(IBlogEntry)

10 def __init__(self, title, body, author):
11 self.title = title
12 self.body = body
13 self.author = author
14 self.created = datetime.datetime.now()

This resource consists of two things: the class which defines the resource constructor as the class
BlogEntry, and an interface attached to the class via an implements statement at class scope using
the IBlogEntry interface as its sole argument.

The interface object used must be an instance of a class that inherits from
zope.interface.Interface.

A resource class may implement zero or more interfaces. You specify that a resource implements
an interface by using the zope.interface.implements() function at class scope. The above
BlogEntry resource implements the IBlogEntry interface.

You can also specify that a particular resource instance provides an interface, as opposed to its class.
When you declare that a class implements an interface, all instances of that class will also provide that
interface. However, you can also just say that a single object provides the interface. To do so, use the
zope.interface.directlyProvides() function:

1 import datetime
2 from zope.interface import directlyProvides
3 from zope.interface import Interface
4

5 class IBlogEntry(Interface):
6 pass
7

8 class BlogEntry(object):
9 def __init__(self, title, body, author):

10 self.title = title
11 self.body = body
12 self.author = author
13 self.created = datetime.datetime.now()

240

22.10. FINDING A RESOURCE WITH A CLASS OR INTERFACE IN LINEAGE

14

15 entry = BlogEntry(’title’, ’body’, ’author’)
16 directlyProvides(entry, IBlogEntry)

zope.interface.directlyProvides() will replace any existing interface that was previously
provided by an instance. If a resource object already has instance-level interface declarations that you
don’t want to replace, use the zope.interface.alsoProvides() function:

1 import datetime
2 from zope.interface import alsoProvides
3 from zope.interface import directlyProvides
4 from zope.interface import Interface
5

6 class IBlogEntry1(Interface):
7 pass
8

9 class IBlogEntry2(Interface):
10 pass
11

12 class BlogEntry(object):
13 def __init__(self, title, body, author):
14 self.title = title
15 self.body = body
16 self.author = author
17 self.created = datetime.datetime.now()
18

19 entry = BlogEntry(’title’, ’body’, ’author’)
20 directlyProvides(entry, IBlogEntry1)
21 alsoProvides(entry, IBlogEntry2)

zope.interface.alsoProvides() will augment the set of interfaces directly provided by an
instance instead of overwriting them like zope.interface.directlyProvides() does.

For more information about how resource interfaces can be used by view configuration, see Using Re-
source Interfaces In View Configuration.

22.10 Finding a Resource With a Class or Interface in Lineage

Use the find_interface() API to locate a parent that is of a particular Python class, or which
implements some interface.

For example, if your resource tree is composed as follows:

241

22. RESOURCES

1 class Thing1(object): pass
2 class Thing2(object): pass
3

4 a = Thing1()
5 b = Thing2()
6 b.__parent__ = a

Calling find_interface(a, Thing1) will return the a resource because a is of class Thing1
(the resource passed as the first argument is considered first, and is returned if the class or interface spec
matches).

Calling find_interface(b, Thing1) will return the a resource because a is of class Thing1
and a is the first resource in b‘s lineage of this class.

Calling find_interface(b, Thing2) will return the b resource.

The second argument to find_interface may also be a interface instead of a class. If it is an interface, each
resource in the lineage is checked to see if the resource implements the specificed interface (instead of
seeing if the resource is of a class). See also Resources Which Implement Interfaces.

22.11 Pyramid API Functions That Act Against Resources

A resource object is used as the context provided to a view. See Traversal and URL Dispatch for more
information about how a resource object becomes the context.

The APIs provided by pyramid.traversal are used against resource objects. These functions can be used
to find the “path” of a resource, the root resource in a resource tree, or to generate a URL for a resource.

The APIs provided by pyramid.location are used against resources. These can be used to walk down a
resource tree, or conveniently locate one resource “inside” another.

Some APIs in pyramid.security accept a resource object as a parameter. For example, the
has_permission() API accepts a resource object as one of its arguments; the ACL is obtained from
this resource or one of its ancestors. Other APIs in the pyramid.securitymodule also accept context
as an argument, and a context is always a resource.

242

CHAPTER

TWENTYTHREE

MUCH ADO ABOUT TRAVERSAL

This chapter was adapted, with permission, from a blog post by Rob Miller, originally published
at http://blog.nonsequitarian.org/2010/much-ado-about-traversal/ .

Traversal is an alternative to URL dispatch which allows Pyramid applications to map URLs to code.

Ex-Zope users whom are already familiar with traversal and view lookup conceptually may want
to skip directly to the Traversal chapter, which discusses technical details. This chapter is mostly
aimed at people who have previous Pylons experience or experience in another framework which does
not provide traversal, and need an introduction to the “why” of traversal.

Some folks who have been using Pylons and its Routes-based URL matching for a long time are being
exposed for the first time, via Pyramid, to new ideas such as “traversal” and “view lookup” as a way to
route incoming HTTP requests to callable code. Some of the same folks believe that traversal is hard to
understand. Others question its usefulness; URL matching has worked for them so far, why should they
even consider dealing with another approach, one which doesn’t fit their brain and which doesn’t provide
any immediately obvious value?

You can be assured that if you don’t want to understand traversal, you don’t have to. You can happily
build Pyramid applications with only URL dispatch. However, there are some straightforward, real-world
use cases that are much more easily served by a traversal-based approach than by a pattern-matching
mechanism. Even if you haven’t yet hit one of these use cases yourself, understanding these new ideas
is worth the effort for any web developer so you know when you might want to use them. Traversal is
actually a straightforward metaphor easily comprehended by anyone who’s ever used a run-of-the-mill
file system with folders and files.

243

http://blog.nonsequitarian.org/
http://blog.nonsequitarian.org/2010/much-ado-about-traversal/

23. MUCH ADO ABOUT TRAVERSAL

23.1 URL Dispatch

Let’s step back and consider the problem we’re trying to solve. An HTTP request for a particular path
has been routed to our web application. The requested path will possibly invoke a specific view callable
function defined somewhere in our app. We’re trying to determine which callable function, if any, should
be invoked for a given requested URL.

Many systems, including Pyramid, offer a simple solution. They offer the concept of “URL matching”.
URL matching approaches this problem by parsing the URL path and comparing the results to a set
of registered “patterns”, defined by a set of regular expressions, or some other URL path templating
syntax. Each pattern is mapped to a callable function somewhere; if the request path matches a specific
pattern, the associated function is called. If the request path matches more than one pattern, some conflict
resolution scheme is used, usually a simple order precedence so that the first match will take priority over
any subsequent matches. If a request path doesn’t match any of the defined patterns, a “404 Not Found”
response is returned.

In Pyramid, we offer an implementation of URL matching which we call URL dispatch. Using Pyra-
mid syntax, we might have a match pattern such as /{userid}/photos/{photoid}, mapped
to a photo_view() function defined somewhere in our code. Then a request for a path such as
/joeschmoe/photos/photo1 would be a match, and the photo_view() function would be in-
voked to handle the request. Similarly, /{userid}/blog/{year}/{month}/{postid} might
map to a blog_post_view() function, so /joeschmoe/blog/2010/12/urlmatchingwould
trigger the function, which presumably would know how to find and render the urlmatching blog post.

23.2 Historical Refresher

Now that we’ve refreshed our understanding of URL dispatch, we’ll dig in to the idea of traversal. Before
we do, though, let’s take a trip down memory lane. If you’ve been doing web work for a while, you
may remember a time when we didn’t have fancy web frameworks like Pylons and Pyramid. Instead, we
had general purpose HTTP servers that primarily served files off of a file system. The “root” of a given
site mapped to a particular folder somewhere on the file system. Each segment of the request URL path
represented a subdirectory. The final path segment would be either a directory or a file, and once the
server found the right file it would package it up in an HTTP response and send it back to the client. So
serving up a request for /joeschmoe/photos/photo1 literally meant that there was a joeschmoe
folder somewhere, which contained a photos folder, which in turn contained a photo1 file. If at any
point along the way we find that there is not a folder or file matching the requested path, we return a 404
response.

As the web grew more dynamic, however, a little bit of extra complexity was added. Technologies such
as CGI and HTTP server modules were developed. Files were still looked up on the file system, but if the

244

23.3. TRAVERSAL (AKA RESOURCE LOCATION)

file ended with (for example) .cgi or .php, or if it lived in a special folder, instead of simply sending
the file to the client the server would read the file, execute it using an interpreter of some sort, and then
send the output from this process to the client as the final result. The server configuration specified which
files would trigger some dynamic code, with the default case being to just serve the static file.

23.3 Traversal (aka Resource Location)

Believe it or not, if you understand how serving files from a file system works, you understand traversal.
And if you understand that a server might do something different based on what type of file a given request
specifies, then you understand view lookup.

The major difference between file system lookup and traversal is that a file system lookup steps through
nested directories and files in a file system tree, while traversal steps through nested dictionary-type
objects in a resource tree. Let’s take a detailed look at one of our example paths, so we can see what I
mean:

The path /joeschmoe/photos/photo1, has four segments: /, joeschmoe, photos and
photo1. With file system lookup we might have a root folder (/) containing a nested folder
(joeschmoe), which contains another nested folder (photos), which finally contains a JPG file
(photo1). With traversal, we instead have a dictionary-like root object. Asking for the joeschmoe
key gives us another dictionary-like object. Asking this in turn for the photos key gives us yet another
mapping object, which finally (hopefully) contains the resource that we’re looking for within its values,
referenced by the photo1 key.

In pure Python terms, then, the traversal or “resource location” portion of satisfying the
/joeschmoe/photos/photo1 request will look something like this pseudocode:

get_root()[’joeschmoe’][’photos’][’photo1’]

get_root() is some function that returns a root traversal resource. If all of the specified keys exist,
then the returned object will be the resource that is being requested, analogous to the JPG file that was
retrieved in the file system example. If a KeyError is generated anywhere along the way, Pyramid will
return 404. (This isn’t precisely true, as you’ll see when we learn about view lookup below, but the basic
idea holds.)

245

23. MUCH ADO ABOUT TRAVERSAL

23.4 What Is a “Resource”?

“Files on a file system I understand”, you might say. “But what are these nested dictionary things? Where
do these objects, these ‘resources’, live? What are they?”

Since Pyramid is not a highly opinionated framework, it makes no restriction on how a resource is im-
plemented; a developer can implement them as he wishes. One common pattern used is to persist all of
the resources, including the root, in a database as a graph. The root object is a dictionary-like object.
Dictionary-like objects in Python supply a __getitem__ method which is called when key lookup
is done. Under the hood, when adict is a dictionary-like object, Python translates adict[’a’] to
adict.__getitem__(’a’). Try doing this in a Python interpreter prompt if you don’t believe us:

1 Python 2.4.6 (#2, Apr 29 2010, 00:31:48)
2 [GCC 4.4.3] on linux2
3 Type "help", "copyright", "credits" or "license" for more information.
4 >>> adict = {}
5 >>> adict[’a’] = 1
6 >>> adict[’a’]
7 1
8 >>> adict.__getitem__(’a’)
9 1

The dictionary-like root object stores the ids of all of its subresources as keys, and provides a
__getitem__ implementation that fetches them. So get_root() fetches the unique root object,
while get_root()[’joeschmoe’] returns a different object, also stored in the database, which in
turn has its own subresources and __getitem__ implementation, etc. These resources might be per-
sisted in a relational database, one of the many “NoSQL” solutions that are becoming popular these days,
or anywhere else, it doesn’t matter. As long as the returned objects provide the dictionary-like API (i.e.
as long as they have an appropriately implemented __getitem__ method) then traversal will work.

In fact, you don’t need a “database” at all. You could use plain dictionaries, with your site’s URL struc-
ture hard-coded directly in the Python source. Or you could trivially implement a set of objects with
__getitem__ methods that search for files in specific directories, and thus precisely recreate the tra-
ditional mechanism of having the URL path mapped directly to a folder structure on the file system.
Traversal is in fact a superset of file system lookup.

See the chapter entitled Resources for a more technical overview of resources.

246

23.5. VIEW LOOKUP

23.5 View Lookup

At this point we’re nearly there. We’ve covered traversal, which is the process by which a specific resource
is retrieved according to a specific URL path. But what is “view lookup”?

The need for view lookup is simple: there is more than one possible action that you might want to take
after finding a resource. With our photo example, for instance, you might want to view the photo in a
page, but you might also want to provide a way for the user to edit the photo and any associated metadata.
We’ll call the former the view view, and the latter will be the edit view. (Original, I know.) Pyramid
has a centralized view application registry where named views can be associated with specific resource
types. So in our example, we’ll assume that we’ve registered view and edit views for photo objects,
and that we’ve specified the view view as the default, so that /joeschmoe/photos/photo1/view
and /joeschmoe/photos/photo1 are equivalent. The edit view would sensibly be provided by a
request for /joeschmoe/photos/photo1/edit.

Hopefully it’s clear that the first portion of the edit view’s URL path is going to re-
solve to the same resource as the non-edit version, specifically the resource returned by
get_root()[’joeschmoe’][’photos’][’photo1’]. But traveral ends there; the photo1
resource doesn’t have an edit key. In fact, it might not even be a dictionary-like object, in which case
photo1[’edit’] would be meaningless. When the Pyramid resource location has been resolved to a
leaf resource, but the entire request path has not yet been expended, the very next path segment is treated
as a view name. The registry is then checked to see if a view of the given name has been specified for
a resource of the given type. If so, the view callable is invoked, with the resource passed in as the re-
lated context object (also available as request.context). If a view callable could not be found,
Pyramid will return a “404 Not Found” response.

You might conceptualize a request for /joeschmoe/photos/photo1/edit as ultimately converted
into the following piece of Pythonic pseudocode:

context = get_root()[’joeschmoe’][’photos’][’photo1’]
view_callable = get_view(context, ’edit’)
request.context = context
view_callable(request)

The get_root and get_view functions don’t really exist. Internally, Pyramid does something more
complicated. But the example above is a reasonable approximation of the view lookup algorithm in
pseudocode.

247

23. MUCH ADO ABOUT TRAVERSAL

23.6 Use Cases

Why should we care about traversal? URL matching is easier to explain, and it’s good enough, right?

In some cases, yes, but certainly not in all cases. So far we’ve had very structured URLs, where our paths
have had a specific, small number of pieces, like this:

/{userid}/{typename}/{objectid}[/{view_name}]

In all of the examples thus far, we’ve hard coded the typename value, assuming that we’d know at de-
velopment time what names were going to be used (“photos”, “blog”, etc.). But what if we don’t know
what these names will be? Or, worse yet, what if we don’t know anything about the structure of the URLs
inside a user’s folder? We could be writing a CMS where we want the end user to be able to arbitrarily
add content and other folders inside his folder. He might decide to nest folders dozens of layers deep.
How will you construct matching patterns that could account for every possible combination of paths that
might develop?

It might be possible, but it certainly won’t be easy. The matching patterns are going to become complex
quickly as you try to handle all of the edge cases.

With traversal, however, it’s straightforward. Twenty layers of nesting would be no problem. Pyramid
will happily call __getitem__ as many times as it needs to, until it runs out of path segments or until
a resource raises a KeyError. Each resource only needs to know how to fetch its immediate children,
the traversal algorithm takes care of the rest. Also, since the structure of the resource tree can live in
the database and not in the code, it’s simple to let users modify the tree at runtime to set up their own
personalized “directory” structures.

Another use case in which traversal shines is when there is a need to support a context-dependent secu-
rity policy. One example might be a document management infrastructure for a large corporation, where
members of different departments have varying access levels to the various other departments’ files. Rea-
sonably, even specific files might need to be made available to specific individuals. Traversal does well
here if your resources actually represent the data objects related to your documents, because the idea of
a resource authorization is baked right into the code resolution and calling process. Resource objects can
store ACLs, which can be inherited and/or overridden by the subresources.

If each resource can thus generate a context-based ACL, then whenever view code is attempting to perform
a sensitive action, it can check against that ACL to see whether the current user should be allowed to
perform the action. In this way you achieve so called “instance based” or “row level” security which
is considerably harder to model using a traditional tabular approach. Pyramid actively supports such a
scheme, and in fact if you register your views with guard permissions and use an authorization policy,
Pyramid can check against a resource’s ACL when deciding whether or not the view itself is available to
the current user.

248

23.6. USE CASES

In summary, there are entire classes of problems that are more easily served by traversal and view lookup
than by URL dispatch. If your problems don’t require it, great: stick with URL dispatch. But if you’re
using Pyramid and you ever find that you do need to support one of these use cases, you’ll be glad you
have traversal in your toolkit.

It is even possible to mix and match traversal with URL dispatch in the same Pyramid application.
See the Combining Traversal and URL Dispatch chapter for details.

249

23. MUCH ADO ABOUT TRAVERSAL

250

CHAPTER

TWENTYFOUR

TRAVERSAL

A traversal uses the URL (Universal Resource Locator) to find a resource located in a resource tree,
which is a set of nested dictionary-like objects. Traversal is done by using each segment of the path
portion of the URL to navigate through the resource tree. You might think of this as looking up files and
directories in a file system. Traversal walks down the path until it finds a published resource, analogous
to a file system “directory” or “file”. The resource found as the result of a traversal becomes the context
of the request. Then, the view lookup subsystem is used to find some view code willing to “publish” this
resource by generating a response.

Using Traversal to map a URL to code is optional. It is often less easy to understand than URL dispatch,
so if you’re a rank beginner, it probably makes sense to use URL dispatch to map URLs to code instead
of traversal. In that case, you can skip this chapter.

24.1 Traversal Details

Traversal is dependent on information in a request object. Every request object contains URL
path information in the PATH_INFO portion of the WSGI environment. The PATH_INFO string
is the portion of a request’s URL following the hostname and port number, but before any
query string elements or fragment element. For example the PATH_INFO portion of the URL
http://example.com:8080/a/b/c?foo=1 is /a/b/c.

Traversal treats the PATH_INFO segment of a URL as a sequence of path segments. For example, the
PATH_INFO string /a/b/c is converted to the sequence [’a’, ’b’, ’c’].

This path sequence is then used to descend through the resource tree, looking up a resource for each path
segment. Each lookup uses the __getitem__ method of a resource in the tree.

For example, if the path info sequence is [’a’, ’b’, ’c’]:

251

24. TRAVERSAL

• Traversal starts by acquiring the root resource of the application by calling the root factory. The
root factory can be configured to return whatever object is appropriate as the traversal root of your
application.

• Next, the first element (’a’) is popped from the path segment sequence and is used as a key to
lookup the corresponding resource in the root. This invokes the root resource’s __getitem__
method using that value (’a’) as an argument.

• If the root resource “contains” a resource with key ’a’, its __getitem__ method will return it.
The context temporarily becomes the “A” resource.

• The next segment (’b’) is popped from the path sequence, and the “A” resource’s __getitem__
is called with that value (’b’) as an argument; we’ll presume it succeeds.

• The “A” resource’s __getitem__ returns another resource, which we’ll call “B”. The context
temporarily becomes the “B” resource.

Traversal continues until the path segment sequence is exhausted or a path element cannot be resolved to
a resource. In either case, the context resource is the last object that the traversal successfully resolved.
If any resource found during traversal lacks a __getitem__ method, or if its __getitem__ method
raises a KeyError, traversal ends immediately, and that resource becomes the context.

The results of a traversal also include a view name. If traversal ends before the path segment sequence is
exhausted, the view name is the next remaining path segment element. If the traversal expends all of the
path segments, then the view name is the empty string (”).

The combination of the context resource and the view name found via traversal is used later in the same
request by the view lookup subsystem to find a view callable. How Pyramid performs view lookup is
explained within the View Configuration chapter.

24.2 The Resource Tree

The resource tree is a set of nested dictionary-like resource objects that begins with a root resource. In
order to use traversal to resolve URLs to code, your application must supply a resource tree to Pyramid.

In order to supply a root resource for an application the Pyramid Router is configured with a call-
back known as a root factory. The root factory is supplied by the application, at startup time, as the
root_factory argument to the Configurator.

The root factory is a Python callable that accepts a request object, and returns the root object of the
resource tree. A function, or class is typically used as an application’s root factory. Here’s an example of
a simple root factory class:

252

24.2. THE RESOURCE TREE

1 class Root(dict):
2 def __init__(self, request):
3 pass

Here’s an example of using this root factory within startup configuration, by passing it to an instance of a
Configurator named config:

1 config = Configurator(root_factory=Root)

The root_factory argument to the Configurator constructor registers this root factory to be
called to generate a root resource whenever a request enters the application. The root factory regis-
tered this way is also known as the global root factory. A root factory can alternately be passed to the
Configurator as a dotted Python name which can refer to a root factory defined in a different module.

If no root factory is passed to the Pyramid Configurator constructor, or if the root_factory value
specified is None, a default root factory is used. The default root factory always returns a resource that
has no child resources; it is effectively empty.

Usually a root factory for a traversal-based application will be more complicated than the above Root
class; in particular it may be associated with a database connection or another persistence mechanism.

Emulating the Default Root Factory

For purposes of understanding the default root factory better, we’ll note that you can emulate the
default root factory by using this code as an explicit root factory in your application setup:

1 class Root(object):
2 def __init__(self, request):
3 pass
4

5 config = Configurator(root_factory=Root)

The default root factory is just a really stupid object that has no behavior or state. Using traversal
against an application that uses the resource tree supplied by the default root resource is not very
interesting, because the default root resource has no children. Its availability is more useful when
you’re developing an application using URL dispatch.

If the items contained within the resource tree are “persistent” (they have state that lasts longer
than the execution of a single process), they become analogous to the concept of domain model objects
used by many other frameworks.

253

24. TRAVERSAL

The resource tree consists of container resources and leaf resources. There is only one difference between
a container resource and a leaf resource: container resources possess a __getitem__ method (making
it “dictionary-like”) while leaf resources do not. The __getitem__ method was chosen as the signify-
ing difference between the two types of resources because the presence of this method is how Python itself
typically determines whether an object is “containerish” or not (dictionary objects are “containerish”).

Each container resource is presumed to be willing to return a child resource or raise a KeyError based
on a name passed to its __getitem__.

Leaf-level instances must not have a __getitem__. If instances that you’d like to be leaves already
happen to have a __getitem__ through some historical inequity, you should subclass these resource
types and cause their __getitem__ methods to simply raise a KeyError. Or just disuse them and
think up another strategy.

Usually, the traversal root is a container resource, and as such it contains other resources. However, it
doesn’t need to be a container. Your resource tree can be as shallow or as deep as you require.

In general, the resource tree is traversed beginning at its root resource using a sequence of path elements
described by the PATH_INFO of the current request; if there are path segments, the root resource’s
__getitem__ is called with the next path segment, and it is expected to return another resource. The
resulting resource’s __getitem__ is called with the very next path segment, and it is expected to return
another resource. This happens ad infinitum until all path segments are exhausted.

24.3 The Traversal Algorithm

This section will attempt to explain the Pyramid traversal algorithm. We’ll provide a description of the
algorithm, a diagram of how the algorithm works, and some example traversal scenarios that might help
you understand how the algorithm operates against a specific resource tree.

We’ll also talk a bit about view lookup. The View Configuration chapter discusses view lookup in detail,
and it is the canonical source for information about views. Technically, view lookup is a Pyramid subsys-
tem that is separated from traversal entirely. However, we’ll describe the fundamental behavior of view
lookup in the examples in the next few sections to give you an idea of how traversal and view lookup
cooperate, because they are almost always used together.

254

24.3. THE TRAVERSAL ALGORITHM

24.3.1 A Description of The Traversal Algorithm

When a user requests a page from your traversal-powered application, the system uses this algorithm to
find a context resource and a view name.

1. The request for the page is presented to the Pyramid router in terms of a standard WSGI request,
which is represented by a WSGI environment and a WSGI start_response callable.

2. The router creates a request object based on the WSGI environment.

3. The root factory is called with the request. It returns a root resource.

4. The router uses the WSGI environment’s PATH_INFO information to determine the path segments
to traverse. The leading slash is stripped off PATH_INFO, and the remaining path segments are
split on the slash character to form a traversal sequence.

The traversal algorithm by default attempts to first URL-unquote and then Unicode-decode each
path segment derived from PATH_INFO from its natural byte string (str type) representation.
URL unquoting is performed using the Python standard library urllib.unquote function.
Conversion from a URL-decoded string into Unicode is attempted using the UTF-8 encoding. If
any URL-unquoted path segment in PATH_INFO is not decodeable using the UTF-8 decoding,
a TypeError is raised. A segment will be fully URL-unquoted and UTF8-decoded before it is
passed in to the __getitem__ of any resource during traversal.

Thus, a request with a PATH_INFO variable of /a/b/c maps to the traversal sequence [u’a’,
u’b’, u’c’].

5. Traversal begins at the root resource returned by the root factory. For the traversal sequence
[u’a’, u’b’, u’c’], the root resource’s __getitem__ is called with the name ’a’.
Traversal continues through the sequence. In our example, if the root resource’s __getitem__
called with the name a returns a resource (aka resource “A”), that resource’s __getitem__ is
called with the name ’b’. If resource “A” returns a resource “B” when asked for ’b’, resource
B’s __getitem__ is then asked for the name ’c’, and may return resource “C”.

6. Traversal ends when a) the entire path is exhausted or b) when any resouce raises a KeyError from
its __getitem__ or c) when any non-final path element traversal does not have a __getitem__
method (resulting in a AttributeError) or d) when any path element is prefixed with the set
of characters @@ (indicating that the characters following the @@ token should be treated as a view
name).

7. When traversal ends for any of the reasons in the previous step, the last resource found during
traversal is deemed to be the context. If the path has been exhausted when traversal ends, the view
name is deemed to be the empty string (”). However, if the path was not exhausted before traversal
terminated, the first remaining path segment is treated as the view name.

255

24. TRAVERSAL

8. Any subsequent path elements after the view name is found are deemed the subpath. The subpath is
always a sequence of path segments that come from PATH_INFO that are “left over” after traversal
has completed.

Once the context resource, the view name, and associated attributes such as the subpath are located, the
job of traversal is finished. It passes back the information it obtained to its caller, the Pyramid Router,
which subsequently invokes view lookup with the context and view name information.

The traversal algorithm exposes two special cases:

• You will often end up with a view name that is the empty string as the result of a particular traversal.
This indicates that the view lookup machinery should look up the default view. The default view
is a view that is registered with no name or a view which is registered with a name that equals the
empty string.

• If any path segment element begins with the special characters @@ (think of them as goggles), the
value of that segment minus the goggle characters is considered the view name immediately and
traversal stops there. This allows you to address views that may have the same names as resource
names in the tree unambiguously.

Finally, traversal is responsible for locating a virtual root. A virtual root is used during “virtual hosting”;
see the Virtual Hosting chapter for information. We won’t speak more about it in this chapter.

256

24.3. THE TRAVERSAL ALGORITHM

257

24. TRAVERSAL

24.3.2 Traversal Algorithm Examples

No one can be expected to understand the traversal algorithm by analogy and description alone, so let’s
examine some traversal scenarios that use concrete URLs and resource tree compositions.

Let’s pretend the user asks for http://example.com/foo/bar/baz/biz/buz.txt. The re-
quest’s PATH_INFO in that case is /foo/bar/baz/biz/buz.txt. Let’s further pretend that when
this request comes in that we’re traversing the following resource tree:

/--
|
|-- foo

|
----bar

Here’s what happens:

• traversal traverses the root, and attempts to find “foo”, which it finds.

• traversal traverses “foo”, and attempts to find “bar”, which it finds.

• traversal traverses “bar”, and attempts to find “baz”, which it does not find (the “bar” resource
raises a KeyError when asked for “baz”).

The fact that it does not find “baz” at this point does not signify an error condition. It signifies that:

• the context is the “bar” resource (the context is the last resource found during traversal).

• the view name is baz

• the subpath is (’biz’, ’buz.txt’)

At this point, traversal has ended, and view lookup begins.

Because it’s the “context” resource, the view lookup machinery examines “bar” to find out what “type” it
is. Let’s say it finds that the context is a Bar type (because “bar” happens to be an instance of the class
Bar). Using the view name (baz) and the type, view lookup asks the application registry this question:

• Please find me a view callable registered using a view configuration with the name “baz” that can
be used for the class Bar.

Let’s say that view lookup finds no matching view type. In this circumstance, the Pyramid router returns
the result of the not found view and the request ends.

However, for this tree:

258

24.3. THE TRAVERSAL ALGORITHM

/--
|
|-- foo

|
----bar

|
----baz

|
biz

The user asks for http://example.com/foo/bar/baz/biz/buz.txt

• traversal traverses “foo”, and attempts to find “bar”, which it finds.

• traversal traverses “bar”, and attempts to find “baz”, which it finds.

• traversal traverses “baz”, and attempts to find “biz”, which it finds.

• traversal traverses “biz”, and attempts to find “buz.txt” which it does not find.

The fact that it does not find a resource related to “buz.txt” at this point does not signify an error condition.
It signifies that:

• the context is the “biz” resource (the context is the last resource found during traversal).

• the view name is “buz.txt”

• the subpath is an empty sequence (()).

At this point, traversal has ended, and view lookup begins.

Because it’s the “context” resource, the view lookup machinery examines the “biz” resource to find out
what “type” it is. Let’s say it finds that the resource is a Biz type (because “biz” is an instance of the
Python class Biz). Using the view name (buz.txt) and the type, view lookup asks the application
registry this question:

• Please find me a view callable registered with a view configuration with the name buz.txt that
can be used for class Biz.

Let’s say that question is answered by the application registry; in such a situation, the application registry
returns a view callable. The view callable is then called with the current WebOb request as the sole
argument: request; it is expected to return a response.

259

24. TRAVERSAL

The Example View Callables Accept Only a Request; How Do I Access the Context Resource?

Most of the examples in this book assume that a view callable is typically passed only a request
object. Sometimes your view callables need access to the context resource, especially when you use
traversal. You might use a supported alternate view callable argument list in your view callables
such as the (context, request) calling convention described in Alternate View Callable Ar-
gument/Calling Conventions. But you don’t need to if you don’t want to. In view callables that
accept only a request, the context resource found by traversal is available as the context attribute
of the request object, e.g. request.context. The view name is available as the view_name
attribute of the request object, e.g. request.view_name. Other Pyramid -specific request at-
tributes are also available as described in Special Attributes Added to the Request by Pyramid.

24.3.3 Using Resource Interfaces In View Configuration

Instead of registering your views with a context that names a Python resource class, you can optionally
register a view callable with a context which is an interface. An interface can be attached arbitrarily
to any resource object. View lookup treats context interfaces specially, and therefore the identity of a
resource can be divorced from that of the class which implements it. As a result, associating a view
with an interface can provide more flexibility for sharing a single view between two or more different
implementations of a resource type. For example, if two resource objects of different Python class types
share the same interface, you can use the same view configuration to specify both of them as a context.

In order to make use of interfaces in your application during view dispatch, you must create an interface
and mark up your resource classes or instances with interface declarations that refer to this interface.

To attach an interface to a resource class, you define the interface and use the
zope.interface.implements() function to associate the interface with the class.

1 from zope.interface import Interface
2 from zope.interface import implements
3

4 class IHello(Interface):
5 """ A marker interface """
6

7 class Hello(object):
8 implements(IHello)

To attach an interface to a resource instance, you define the interface and use the
zope.interface.alsoProvides() function to associate the interface with the instance.
This function mutates the instance in such a way that the interface is attached to it.

260

24.3. THE TRAVERSAL ALGORITHM

1 from zope.interface import Interface
2 from zope.interface import alsoProvides
3

4 class IHello(Interface):
5 """ A marker interface """
6

7 class Hello(object):
8 pass
9

10 def make_hello():
11 hello = Hello()
12 alsoProvides(hello, IHello)
13 return hello

Regardless of how you associate an interface, with a resource instance, or a resource class, the resulting
code to associate that interface with a view callable is the same. Assuming the above code that defines an
IHello interface lives in the root of your application, and its module is named “resources.py”, the in-
terface declaration below will associate the mypackage.views.hello_world view with resources
that implement, or provide, this interface.

1 # config is an instance of pyramid.config.Configurator
2

3 config.add_view(’mypackage.views.hello_world’, name=’hello.html’,
4 context=’mypackage.resources.IHello’)

Any time a resource that is determined to be the context provides this interface, and a view named
hello.html is looked up against it as per the URL, the mypackage.views.hello_world view
callable will be invoked.

Note, in cases where a view is registered against a resource class, and a view is also registered against an
interface that the resource class implements, an ambiguity arises. Views registered for the resource class
take precedence over any views registered for any interface the resource class implements. Thus, if one
view configuration names a context of both the class type of a resource, and another view configuration
names a context of interface implemented by the resource’s class, and both view configurations are
otherwise identical, the view registered for the context’s class will “win”.

For more information about defining resources with interfaces for use within view configuration, see
Resources Which Implement Interfaces.

261

24. TRAVERSAL

24.4 References

A tutorial showing how traversal can be used within a Pyramid application exists in ZODB + Traversal
Wiki Tutorial.

See the View Configuration chapter for detailed information about view lookup.

The pyramid.traversal module contains API functions that deal with traversal, such as traversal
invocation from within application code.

The pyramid.request.Request.resource_url() method generates a URL when given a re-
source retrieved from a resource tree.

262

CHAPTER

TWENTYFIVE

SECURITY

Pyramid provides an optional declarative authorization system that can prevent a view from being invoked
based on an authorization policy. Before a view is invoked, the authorization system can use the creden-
tials in the request along with the context resource to determine if access will be allowed. Here’s how it
works at a high level:

• A request is generated when a user visits the application.

• Based on the request, a context resource is located through resource location. A context is located
differently depending on whether the application uses traversal or URL dispatch, but a context is
ultimately found in either case. See the URL Dispatch chapter for more information.

• A view callable is located by view lookup using the context as well as other attributes of the request.

• If an authentication policy is in effect, it is passed the request; it returns some number of principal
identifiers.

• If an authorization policy is in effect and the view configuration associated with the view callable
that was found has a permission associated with it, the authorization policy is passed the context,
some number of principal identifiers returned by the authentication policy, and the permission
associated with the view; it will allow or deny access.

• If the authorization policy allows access, the view callable is invoked.

• If the authorization policy denies access, the view callable is not invoked; instead the forbidden
view is invoked.

Security in Pyramid, unlike many systems, cleanly and explicitly separates authentication and authoriza-
tion. Authentication is merely the mechanism by which credentials provided in the request are resolved
to one or more principal identifiers. These identifiers represent the users and groups in effect during the
request. Authorization then determines access based on the principal identifiers, the view callable being
invoked, and the context resource.

Authorization is enabled by modifying your application to include an authentication policy and autho-
rization policy. Pyramid comes with a variety of implementations of these policies. To provide maximal
flexibility, Pyramid also allows you to create custom authentication policies and authorization policies.

263

25. SECURITY

25.1 Enabling an Authorization Policy

By default, Pyramid enables no authorization policy. All views are accessible by completely anonymous
users. In order to begin protecting views from execution based on security settings, you need to enable an
authorization policy.

25.1.1 Enabling an Authorization Policy Imperatively

Passing an authorization_policy argument to the constructor of the Configurator class en-
ables an authorization policy.

You must also enable an authentication policy in order to enable the authorization policy. This is because
authorization, in general, depends upon authentication. Use the authentication_policy argument
to the Configurator class during application setup to specify an authentication policy.

For example:

1 from pyramid.config import Configurator
2 from pyramid.authentication import AuthTktAuthenticationPolicy
3 from pyramid.authorization import ACLAuthorizationPolicy
4 authentication_policy = AuthTktAuthenticationPolicy(’seekrit’)
5 authorization_policy = ACLAuthorizationPolicy()
6 config = Configurator(authentication_policy=authentication_policy,
7 authorization_policy=authorization_policy)

the authentication_policy and authorization_policy arguments may also be
passed to the Configurator as dotted Python name values, each representing the dotted name path to a
suitable implementation global defined at Python module scope.

The above configuration enables a policy which compares the value of an “auth ticket” cookie passed in
the request’s environment which contains a reference to a single principal against the principals present
in any ACL found in the resource tree when attempting to call some view.

While it is possible to mix and match different authentication and authorization policies, it is an error to
pass an authentication policy without the authorization policy or vice versa to a Configurator constructor.

See also the pyramid.authorization and pyramid.authentication modules for alternate
implementations of authorization and authentication policies.

264

25.2. PROTECTING VIEWS WITH PERMISSIONS

25.2 Protecting Views with Permissions

To protect a view callable from invocation based on a user’s security settings when a particular type of
resource becomes the context, you must pass a permission to view configuration. Permissions are usually
just strings, and they have no required composition: you can name permissions whatever you like.

For example, the following view declaration protects the view named add_entry.html
when the context resource is of type Blog with the add permission using the
pyramid.config.Configurator.add_view() API:

1 # config is an instance of pyramid.config.Configurator
2

3 config.add_view(’mypackage.views.blog_entry_add_view’,
4 name=’add_entry.html’,
5 context=’mypackage.resources.Blog’,
6 permission=’add’)

The equivalent view registration including the add permission name may be performed via the
@view_config decorator:

1 from pyramid.view import view_config
2 from resources import Blog
3

4 @view_config(context=Blog, name=’add_entry.html’, permission=’add’)
5 def blog_entry_add_view(request):
6 """ Add blog entry code goes here """
7 pass

As a result of any of these various view configuration statements, if an authorization policy is in
place when the view callable is found during normal application operations, the requesting user will
need to possess the add permission against the context resource in order to be able to invoke the
blog_entry_add_view view. If he does not, the Forbidden view will be invoked.

25.2.1 Setting a Default Permission

If a permission is not supplied to a view configuration, the registered view will always be executable by
entirely anonymous users: any authorization policy in effect is ignored.

In support of making it easier to configure applications which are “secure by default”, Pyramid allows
you to configure a default permission. If supplied, the default permission is used as the permission string
to all view registrations which don’t otherwise name a permission argument.

These APIs are in support of configuring a default permission for an application:

265

25. SECURITY

• The default_permission constructor argument to the Configurator constructor.

• The pyramid.config.Configurator.set_default_permission() method.

When a default permission is registered:

• If a view configuration names an explicit permission, the default permission is ignored for that
view registration, and the view-configuration-named permission is used.

• If a view configuration names the permission pyramid.security.NO_PERMISSION_REQUIRED,
the default permission is ignored, and the view is registered without a permission (making it avail-
able to all callers regardless of their credentials).

When you register a default permission, all views (even exception view views) are protected by
a permission. For all views which are truly meant to be anonymously accessible, you will need to
associate the view’s configuration with the pyramid.security.NO_PERMISSION_REQUIRED
permission.

25.3 Assigning ACLs to your Resource Objects

When the default Pyramid authorization policy determines whether a user possesses a particular permis-
sion with respect to a resource, it examines the ACL associated with the resource. An ACL is associated
with a resource by adding an __acl__ attribute to the resource object. This attribute can be defined on
the resource instance if you need instance-level security, or it can be defined on the resource class if you
just need type-level security.

For example, an ACL might be attached to the resource for a blog via its class:

1 from pyramid.security import Everyone
2 from pyramid.security import Allow
3

4 class Blog(object):
5 __acl__ = [
6 (Allow, Everyone, ’view’),
7 (Allow, ’group:editors’, ’add’),
8 (Allow, ’group:editors’, ’edit’),
9]

Or, if your resources are persistent, an ACL might be specified via the __acl__ attribute of an instance
of a resource:

266

25.4. ELEMENTS OF AN ACL

1 from pyramid.security import Everyone
2 from pyramid.security import Allow
3

4 class Blog(object):
5 pass
6

7 blog = Blog()
8

9 blog.__acl__ = [
10 (Allow, Everyone, ’view’),
11 (Allow, ’group:editors’, ’add’),
12 (Allow, ’group:editors’, ’edit’),
13]

Whether an ACL is attached to a resource’s class or an instance of the resource itself, the effect is the
same. It is useful to decorate individual resource instances with an ACL (as opposed to just decorating
their class) in applications such as “CMS” systems where fine-grained access is required on an object-by-
object basis.

25.4 Elements of an ACL

Here’s an example ACL:

1 from pyramid.security import Everyone
2 from pyramid.security import Allow
3

4 __acl__ = [
5 (Allow, Everyone, ’view’),
6 (Allow, ’group:editors’, ’add’),
7 (Allow, ’group:editors’, ’edit’),
8]

The example ACL indicates that the pyramid.security.Everyone principal – a special system-
defined principal indicating, literally, everyone – is allowed to view the blog, the group:editors
principal is allowed to add to and edit the blog.

Each element of an ACL is an ACE or access control entry. For example, in the above code block, there are
three ACEs: (Allow, Everyone, ’view’), (Allow, ’group:editors’, ’add’), and
(Allow, ’group:editors’, ’edit’).

267

25. SECURITY

The first element of any ACE is either pyramid.security.Allow, or
pyramid.security.Deny, representing the action to take when the ACE matches. The sec-
ond element is a principal. The third argument is a permission or sequence of permission names.

A principal is usually a user id, however it also may be a group id if your authentication system provides
group information and the effective authentication policy policy is written to respect group information.
For example, the pyramid.authentication.RepozeWho1AuthenicationPolicy respects
group information if you configure it with a callback.

Each ACE in an ACL is processed by an authorization policy in the order dictated by the ACL. So if you
have an ACL like this:

1 from pyramid.security import Everyone
2 from pyramid.security import Allow
3 from pyramid.security import Deny
4

5 __acl__ = [
6 (Allow, Everyone, ’view’),
7 (Deny, Everyone, ’view’),
8]

The default authorization policy will allow everyone the view permission, even though later in the ACL
you have an ACE that denies everyone the view permission. On the other hand, if you have an ACL like
this:

1 from pyramid.security import Everyone
2 from pyramid.security import Allow
3 from pyramid.security import Deny
4

5 __acl__ = [
6 (Deny, Everyone, ’view’),
7 (Allow, Everyone, ’view’),
8]

The authorization policy will deny everyone the view permission, even though later in the ACL is an ACE
that allows everyone.

The third argument in an ACE can also be a sequence of permission names instead of a single permission
name. So instead of creating multiple ACEs representing a number of different permission grants to a
single group:editors group, we can collapse this into a single ACE, as below.

268

25.5. SPECIAL PRINCIPAL NAMES

1 from pyramid.security import Everyone
2 from pyramid.security import Allow
3

4 __acl__ = [
5 (Allow, Everyone, ’view’),
6 (Allow, ’group:editors’, (’add’, ’edit’)),
7]

25.5 Special Principal Names

Special principal names exist in the pyramid.security module. They can be imported for use in
your own code to populate ACLs, e.g. pyramid.security.Everyone.

pyramid.security.Everyone

Literally, everyone, no matter what. This object is actually a string “under the hood”
(system.Everyone). Every user “is” the principal named Everyone during every request,
even if a security policy is not in use.

pyramid.security.Authenticated

Any user with credentials as determined by the current security policy. You might think
of it as any user that is “logged in”. This object is actually a string “under the hood”
(system.Authenticated).

25.6 Special Permissions

Special permission names exist in the pyramid.security module. These can be imported for use in
ACLs. pyramid.security.ALL_PERMISSIONS

An object representing, literally, all permissions. Useful in an ACL like so: (Allow,
’fred’, ALL_PERMISSIONS). The ALL_PERMISSIONS object is actually a stand-in
object that has a __contains__ method that always returns True, which, for all known
authorization policies, has the effect of indicating that a given principal “has” any permission
asked for by the system.

269

25. SECURITY

25.7 Special ACEs

A convenience ACE is defined representing a deny to everyone of all permissions in
pyramid.security.DENY_ALL. This ACE is often used as the last ACE of an ACL to explicitly
cause inheriting authorization policies to “stop looking up the traversal tree” (effectively breaking any
inheritance). For example, an ACL which allows only fred the view permission for a particular resource
despite what inherited ACLs may say when the default authorization policy is in effect might look like
so:

1 from pyramid.security import Allow
2 from pyramid.security import DENY_ALL
3

4 __acl__ = [(Allow, ’fred’, ’view’), DENY_ALL]

“Under the hood”, the pyramid.security.DENY_ALL ACE equals the following:

1 from pyramid.security import ALL_PERMISSIONS
2 __acl__ = [(Deny, Everyone, ALL_PERMISSIONS)]

25.8 ACL Inheritance and Location-Awareness

While the default authorization policy is in place, if a resource object does not have an ACL when it is
the context, its parent is consulted for an ACL. If that object does not have an ACL, its parent is consulted
for an ACL, ad infinitum, until we’ve reached the root and there are no more parents left.

In order to allow the security machinery to perform ACL inheritance, resource objects must provide
location-awareness. Providing location-awareness means two things: the root object in the resource tree
must have a __name__ attribute and a __parent__ attribute.

1 class Blog(object):
2 __name__ = ’’
3 __parent__ = None

An object with a __parent__ attribute and a __name__ attribute is said to be location-aware.
Location-aware objects define an __parent__ attribute which points at their parent object. The root
object’s __parent__ is None.

See pyramid.location for documentations of functions which use location-awareness. See also Location-
Aware Resources.

270

25.9. CHANGING THE FORBIDDEN VIEW

25.9 Changing the Forbidden View

When Pyramid denies a view invocation due to an authorization denial, the special forbidden view is
invoked. “Out of the box”, this forbidden view is very plain. See Changing the Forbidden View within
Using Hooks for instructions on how to create a custom forbidden view and arrange for it to be called
when view authorization is denied.

25.10 Debugging View Authorization Failures

If your application in your judgment is allowing or denying view access inappropriately, start your appli-
cation under a shell using the PYRAMID_DEBUG_AUTHORIZATION environment variable set to 1. For
example:

$ PYRAMID_DEBUG_AUTHORIZATION=1 bin/paster serve myproject.ini

When any authorization takes place during a top-level view rendering, a message will be logged to the
console (to stderr) about what ACE in which ACL permitted or denied the authorization based on authen-
tication information.

This behavior can also be turned on in the application .ini file by setting the
pyramid.debug_authorization key to true within the application’s configuration section, e.g.:

1 [app:main]
2 use = egg:MyProject
3 pyramid.debug_authorization = true

With this debug flag turned on, the response sent to the browser will also contain security debugging
information in its body.

25.11 Debugging Imperative Authorization Failures

The pyramid.security.has_permission() API is used to check security within
view functions imperatively. It returns instances of objects that are effectively booleans.
But these objects are not raw True or False objects, and have information at-
tached to them about why the permission was allowed or denied. The object will
be one of pyramid.security.ACLAllowed, pyramid.security.ACLDenied,
pyramid.security.Allowed, or pyramid.security.Denied, as documented in pyra-
mid.security. At the very minimum these objects will have a msg attribute, which is a string indicating
why the permission was denied or allowed. Introspecting this information in the debugger or via print
statements when a call to has_permission() fails is often useful.

271

25. SECURITY

25.12 Creating Your Own Authentication Policy

Pyramid ships with a number of useful out-of-the-box security policies (see
pyramid.authentication). However, creating your own authentication policy is often nec-
essary when you want to control the “horizontal and vertical” of how your users authenticate. Doing so
is a matter of creating an instance of something that implements the following interface:

1 class IAuthenticationPolicy(object):
2 """ An object representing a Pyramid authentication policy. """
3

4 def authenticated_userid(self, request):
5 """ Return the authenticated userid or ‘‘None‘‘ if no
6 authenticated userid can be found. This method of the policy
7 should ensure that a record exists in whatever persistent store is
8 used related to the user (the user should not have been deleted);
9 if a record associated with the current id does not exist in a

10 persistent store, it should return ‘‘None‘‘."""
11

12 def unauthenticated_userid(self, request):
13 """ Return the *unauthenticated* userid. This method performs the
14 same duty as ‘‘authenticated_userid‘‘ but is permitted to return the
15 userid based only on data present in the request; it needn’t (and
16 shouldn’t) check any persistent store to ensure that the user record
17 related to the request userid exists."""
18

19 def effective_principals(self, request):
20 """ Return a sequence representing the effective principals
21 including the userid and any groups belonged to by the current
22 user, including ’system’ groups such as
23 ‘‘pyramid.security.Everyone‘‘ and
24 ‘‘pyramid.security.Authenticated‘‘. """
25

26 def remember(self, request, principal, **kw):
27 """ Return a set of headers suitable for ’remembering’ the
28 principal named ‘‘principal‘‘ when set in a response. An
29 individual authentication policy and its consumers can decide
30 on the composition and meaning of **kw. """
31

32 def forget(self, request):
33 """ Return a set of headers suitable for ’forgetting’ the
34 current user on subsequent requests. """

After you do so, you can pass an instance of such a class into the Configurator class at configuration
time as authentication_policy to use it.

272

25.13. CREATING YOUR OWN AUTHORIZATION POLICY

25.13 Creating Your Own Authorization Policy

An authorization policy is a policy that allows or denies access after a user has been authenticated. By
default, Pyramid will use the pyramid.authorization.ACLAuthorizationPolicy if an au-
thentication policy is activated and an authorization policy isn’t otherwise specified.

In some cases, it’s useful to be able to use a different authorization policy than the default
ACLAuthorizationPolicy. For example, it might be desirable to construct an alternate autho-
rization policy which allows the application to use an authorization mechanism that does not involve ACL
objects.

Pyramid ships with only a single default authorization policy, so you’ll need to create your own if you’d
like to use a different one. Creating and using your own authorization policy is a matter of creating an
instance of an object that implements the following interface:

1 class IAuthorizationPolicy(object):
2 """ An object representing a Pyramid authorization policy. """
3 def permits(self, context, principals, permission):
4 """ Return ‘‘True‘‘ if any of the ‘‘principals‘‘ is allowed the
5 ‘‘permission‘‘ in the current ‘‘context‘‘, else return ‘‘False‘‘
6 """
7

8 def principals_allowed_by_permission(self, context, permission):
9 """ Return a set of principal identifiers allowed by the

10 ‘‘permission‘‘ in ‘‘context‘‘. This behavior is optional; if you
11 choose to not implement it you should define this method as
12 something which raises a ‘‘NotImplementedError‘‘. This method
13 will only be called when the
14 ‘‘pyramid.security.principals_allowed_by_permission‘‘ API is
15 used."""

After you do so, you can pass an instance of such a class into the Configurator class at configuration
time as authorization_policy to use it.

273

25. SECURITY

274

CHAPTER

TWENTYSIX

COMBINING TRAVERSAL AND
URL DISPATCH

When you write most Pyramid applications, you’ll be using one or the other of two available resource
location subsystems: traversal or URL dispatch. However, to solve a limited set of problems, it’s useful
to use both traversal and URL dispatch together within the same application. Pyramid makes this possible
via hybrid applications.

Reasoning about the behavior of a “hybrid” URL dispatch + traversal application can be challeng-
ing. To successfully reason about using URL dispatch and traversal together, you need to understand
URL pattern matching, root factories, and the traversal algorithm, and the potential interactions be-
tween them. Therefore, we don’t recommend creating an application that relies on hybrid behavior
unless you must.

26.1 A Review of Non-Hybrid Applications

When used according to the tutorials in its documentation Pyramid is a “dual-mode” framework: the
tutorials explain how to create an application in terms of using either url dispatch or traversal. This
chapter details how you might combine these two dispatch mechanisms, but we’ll review how they work
in isolation before trying to combine them.

26.1.1 URL Dispatch Only

An application that uses url dispatch exclusively to map URLs to code will often have statements like this
within application startup configuration:

275

26. COMBINING TRAVERSAL AND URL DISPATCH

1 # config is an instance of pyramid.config.Configurator
2

3 config.add_route(’foobar’, ’{foo}/{bar}’)
4 config.add_route(’bazbuz’, ’{baz}/{buz}’)
5

6 config.add_view(’myproject.views.foobar’, route_name=’foobar’)
7 config.add_view(’myproject.views.bazbuz’, route_name=’bazbuz’)

Each route corresponds to one or more view callables. Each view callable is associated with a route by
passing a route_name parameter that matches its name during a call to add_view(). When a route
is matched during a request, view lookup is used to match the request to its associated view callable. The
presence of calls to add_route() signify that an application is using URL dispatch.

26.1.2 Traversal Only

An application that uses only traversal will have view configuration declarations that look like this:

1 # config is an instance of pyramid.config.Configurator
2

3 config.add_view(’mypackage.views.foobar’, name=’foobar’)
4 config.add_view(’mypackage.views.bazbuz’, name=’bazbuz’)

When the above configuration is applied to an application, the mypackage.views.foobar
view callable above will be called when the URL /foobar is visited. Likewise, the view
mypackage.views.bazbuz will be called when the URL /bazbuz is visited.

Typically, an application that uses traversal exclusively won’t perform any calls to
pyramid.config.Configurator.add_route() in its startup code.

26.2 Hybrid Applications

Either traversal or url dispatch alone can be used to create a Pyramid application. However, it is also
possible to combine the concepts of traversal and url dispatch when building an application: the result is
a hybrid application. In a hybrid application, traversal is performed after a particular route has matched.

A hybrid application is a lot more like a “pure” traversal-based application than it is like a “pure” URL-
dispatch based application. But unlike in a “pure” traversal-based application, in a hybrid application,
traversal is performed during a request after a route has already matched. This means that the URL

276

26.2. HYBRID APPLICATIONS

pattern that represents the pattern argument of a route must match the PATH_INFO of a request,
and after the route pattern has matched, most of the “normal” rules of traversal with respect to resource
location and view lookup apply.

There are only four real differences between a purely traversal-based application and a hybrid application:

• In a purely traversal based application, no routes are defined; in a hybrid application, at least one
route will be defined.

• In a purely traversal based application, the root object used is global, implied by the root factory
provided at startup time; in a hybrid application, the root object at which traversal begins may be
varied on a per-route basis.

• In a purely traversal-based application, the PATH_INFO of the underlying WSGI environment
is used wholesale as a traversal path; in a hybrid application, the traversal path is not the entire
PATH_INFO string, but a portion of the URL determined by a matching pattern in the matched
route configuration’s pattern.

• In a purely traversal based application, view configurations which do not mention a route_name
argument are considered during view lookup; in a hybrid application, when a route is matched, only
view configurations which mention that route’s name as a route_name are considered during
view lookup.

More generally, a hybrid application is a traversal-based application except:

• the traversal root is chosen based on the route configuration of the route that matched instead of
from the root_factory supplied during application startup configuration.

• the traversal path is chosen based on the route configuration of the route that matched rather than
from the PATH_INFO of a request.

• the set of views that may be chosen during view lookup when a route matches are limited to those
which specifically name a route_name in their configuration that is the same as the matched
route’s name.

To create a hybrid mode application, use a route configuration that implies a particular root factory and
which also includes a pattern argument that contains a special dynamic part: either *traverse or
*subpath.

277

26. COMBINING TRAVERSAL AND URL DISPATCH

26.2.1 The Root Object for a Route Match

A hybrid application implies that traversal is performed during a request after a route has matched. Traver-
sal, by definition, must always begin at a root object. Therefore it’s important to know which root object
will be traversed after a route has matched.

Figuring out which root object results from a particular route match is straightforward. When a route is
matched:

• If the route’s configuration has a factory argument which points to a root factory callable, that
callable will be called to generate a root object.

• If the route’s configuration does not have a factory argument, the global root factory will
be called to generate a root object. The global root factory is the callable implied by the
root_factory argument passed to the Configurator at application startup time.

• If a root_factory argument is not provided to the Configurator at startup time, a default
root factory is used. The default root factory is used to generate a root object.

Root factories related to a route were explained previously within Route Factories. Both the
global root factory and default root factory were explained previously within The Resource Tree.

26.2.2 Using *traverse In a Route Pattern

A hybrid application most often implies the inclusion of a route configuration that contains the special
token *traverse at the end of a route’s pattern:

1 config.add_route(’home’, ’{foo}/{bar}/*traverse’)

A *traverse token at the end of the pattern in a route’s configuration implies a “remainder” capture
value. When it is used, it will match the remainder of the path segments of the URL. This remainder
becomes the path used to perform traversal.

The *remainder route pattern syntax is explained in more detail within Route Pattern Syntax.

A hybrid mode application relies more heavily on traversal to do resource location and view lookup than
most examples indicate within URL Dispatch.

278

26.2. HYBRID APPLICATIONS

Because the pattern of the above route ends with *traverse, when this route configuration is matched
during a request, Pyramid will attempt to use traversal against the root object implied by the root factory
that is implied by the route’s configuration. Since no root_factory argument is explicitly specified
for this route, this will either be the global root factory for the application, or the default root factory.
Once traversal has found a context resource, view lookup will be invoked in almost exactly the same way
it would have been invoked in a “pure” traversal-based application.

Let’s assume there is no global root factory configured in this application. The default root factory cannot
be traversed: it has no useful __getitem__ method. So we’ll need to associate this route configuration
with a custom root factory in order to create a useful hybrid application. To that end, let’s imagine that
we’ve created a root factory that looks like so in a module named routes.py:

1 class Resource(object):
2 def __init__(self, subobjects):
3 self.subobjects = subobjects
4

5 def __getitem__(self, name):
6 return self.subobjects[name]
7

8 root = Resource(
9 {’a’: Resource({’b’: Resource({’c’: Resource({})})})}

10)
11

12 def root_factory(request):
13 return root

Above, we’ve defined a (bogus) resource tree that can be traversed, and a root_factory function that
can be used as part of a particular route configuration statement:

1 config.add_route(’home’, ’{foo}/{bar}/*traverse’,
2 factory=’mypackage.routes.root_factory’)

The factory above points at the function we’ve defined. It will return an instance of the Resource
class as a root object whenever this route is matched. Instances of the Resource class can be used for
tree traversal because they have a __getitem__ method that does something nominally useful. Since
traversal uses __getitem__ to walk the resources of a resource tree, using traversal against the root
resource implied by our route statement is a reasonable thing to do.

We could have also used our root_factory function as the root_factory argument of
the Configurator constructor, instead of associating it with a particular route inside the route’s
configuration. Every hybrid route configuration that is matched but which does not name a factory
attribute will use the use global root_factory function to generate a root object.

279

26. COMBINING TRAVERSAL AND URL DISPATCH

When the route configuration named home above is matched during a request, the matchdict gener-
ated will be based on its pattern: {foo}/{bar}/*traverse. The “capture value” implied by the
*traverse element in the pattern will be used to traverse the resource tree in order to find a context
resource, starting from the root object returned from the root factory. In the above example, the root
object found will be the instance named root in routes.py.

If the URL that matched a route with the pattern {foo}/{bar}/*traverse, is
http://example.com/one/two/a/b/c, the traversal path used against the root object will
be a/b/c. As a result, Pyramid will attempt to traverse through the edges ’a’, ’b’, and ’c’,
beginning at the root object.

In our above example, this particular set of traversal steps will mean that the context resource of the view
would be the Resource object we’ve named ’c’ in our bogus resource tree and the view name resulting
from traversal will be the empty string; if you need a refresher about why this outcome is presumed, see
The Traversal Algorithm.

At this point, a suitable view callable will be found and invoked using view lookup as described in View
Configuration, but with a caveat: in order for view lookup to work, we need to define a view configuration
that will match when view lookup is invoked after a route matches:

1 config.add_route(’home’, ’{foo}/{bar}/*traverse’,
2 factory=’mypackage.routes.root_factory’)
3 config.add_view(’mypackage.views.myview’, route_name=’home’)

Note that the above call to add_view() includes a route_name argument. View configurations that
include a route_name argument are meant to associate a particular view declaration with a route, using
the route’s name, in order to indicate that the view should only be invoked when the route matches.

Calls to add_view() may pass a route_name attribute, which refers to the value of an existing
route’s name argument. In the above example, the route name is home, referring to the name of the route
defined above it.

The above mypackage.views.myview view callable will be invoked when:

• the route named “home” is matched

• the view name resulting from traversal is the empty string.

• the context resource is any object.

It is also possible to declare alternate views that may be invoked when a hybrid route is matched:

280

26.2. HYBRID APPLICATIONS

1 config.add_route(’home’, ’{foo}/{bar}/*traverse’,
2 factory=’mypackage.routes.root_factory’)
3 config.add_view(’mypackage.views.myview’, route_name=’home’)
4 config.add_view(’mypackage.views.another_view’, route_name=’home’,
5 name=’another’)

The add_view call for mypackage.views.another_view above names a different view and,
more importantly, a different view name. The above mypackage.views.another_view view will
be invoked when:

• the route named “home” is matched

• the view name resulting from traversal is another.

• the context resource is any object.

For instance, if the URL http://example.com/one/two/a/another is provided to an applica-
tion that uses the previously mentioned resource tree, the mypackage.views.another view callable
will be called instead of the mypackage.views.myview view callable because the view name will
be another instead of the empty string.

More complicated matching can be composed. All arguments to route configuration statements and view
configuration statements are supported in hybrid applications (such as predicate arguments).

26.2.3 Using the traverse Argument In a Route Definition

Rather than using the *traverse remainder marker in a pattern, you can use the traverse argument
to the add_route() method.

When you use the *traverse remainder marker, the traversal path is limited to being the remainder
segments of a request URL when a route matches. However, when you use the traverse argument or
attribute, you have more control over how to compose a traversal path.

Here’s a use of the traverse pattern in a call to add_route():

1 config.add_route(’abc’, ’/articles/{article}/edit’,
2 traverse=’/{article}’)

281

26. COMBINING TRAVERSAL AND URL DISPATCH

The syntax of the traverse argument is the same as it is for pattern.

If, as above, the pattern provided is /articles/{article}/edit, and the traverse argu-
ment provided is /{article}, when a request comes in that causes the route to match in such a way
that the article match value is 1 (when the request URI is /articles/1/edit), the traversal path
will be generated as /1. This means that the root object’s __getitem__ will be called with the name 1
during the traversal phase. If the 1 object exists, it will become the context of the request. The Traversal
chapter has more information about traversal.

If the traversal path contains segment marker names which are not present in the pattern argument, a
runtime error will occur. The traverse pattern should not contain segment markers that do not exist in
the path.

Note that the traverse argument is ignored when attached to a route that has a *traverse remainder
marker in its pattern.

Traversal will begin at the root object implied by this route (either the global root, or the object returned
by the factory associated with this route).

Making Global Views Match

By default, only view configurations that mention a route_name will be found during view lookup
when a route that has a *traverse in its pattern matches. You can allow views without a route_name
attribute to match a route by adding the use_global_views flag to the route definition. For example,
the myproject.views.bazbuz view below will be found if the route named abc below is matched
and the PATH_INFO is /abc/bazbuz, even though the view configuration statement does not have the
route_name="abc" attribute.

1 config.add_route(’abc’, ’/abc/*traverse’, use_global_views=True)
2 config.add_view(’myproject.views.bazbuz’, name=’bazbuz’)

26.2.4 Using *subpath in a Route Pattern

There are certain extremely rare cases when you’d like to influence the traversal subpath when a route
matches without actually performing traversal. For instance, the pyramid.wsgi.wsgiapp2() dec-
orator and the pyramid.static.static_view helper attempt to compute PATH_INFO from the
request’s subpath when its use_subpath argument is True, so it’s useful to be able to influence this
value.

When *subpath exists in a pattern, no path is actually traversed, but the traversal algorithm will return
a subpath list implied by the capture value of *subpath. You’ll see this pattern most commonly in route
declarations that look like this:

282

26.3. CORNER CASES

1 from pryamid.static import static_view
2

3 www = static_view(’mypackage:static’, use_subpath=True)
4

5 config.add_route(’static’, ’/static/*subpath’)
6 config.add_view(www, route_name=’static’)

mypackage.views.www is an instance of pyramid.static.static_view. This effectively
tells the static helper to traverse everything in the subpath as a filename.

26.3 Corner Cases

A number of corner case “gotchas” exist when using a hybrid application. We’ll detail them here.

26.3.1 Registering a Default View for a Route That Has a view Attribute

As of Pyramid 1.1 this section is slated to be removed in a later documentation release be-
cause the the ability to add views directly to the route configuration by passing a view argument to
add_route has been deprecated.

It is an error to provide both a view argument to a route configuration and a view configuration which
names a route_name that has no name value or the empty name value. For example, this pair of
declarations will generate a conflict error at startup time.

1 config.add_route(’home’, ’{foo}/{bar}/*traverse’,
2 view=’myproject.views.home’)
3 config.add_view(’myproject.views.another’, route_name=’home’)

This is because the view argument to the add_route() above is an implicit default view when that
route matches. add_route calls don’t need to supply a view attribute. For example, this add_route
call:

1 config.add_route(’home’, ’{foo}/{bar}/*traverse’,
2 view=’myproject.views.home’)

Can also be spelled like so:

283

26. COMBINING TRAVERSAL AND URL DISPATCH

1 config.add_route(’home’, ’{foo}/{bar}/*traverse’)
2 config.add_view(’myproject.views.home’, route_name=’home’)

The two spellings are logically equivalent. In fact, the former is just a syntactical shortcut for the latter.

26.3.2 Binding Extra Views Against a Route Configuration that Doesn’t
Have a *traverse Element In Its Pattern

Here’s another corner case that just makes no sense:

1 config.add_route(’abc’, ’/abc’, view=’myproject.views.abc’)
2 config.add_view(’myproject.views.bazbuz’, name=’bazbuz’,
3 route_name=’abc’)

The above view declaration is useless, because it will never be matched when the route it references
has matched. Only the view associated with the route itself (myproject.views.abc) will ever be
invoked when the route matches, because the default view is always invoked when a route matches and
when no post-match traversal is performed.

To make the above view declaration useful, the special *traverse token must end the route’s pattern.
For example:

1 config.add_route(’abc’, ’/abc/*traverse’, view=’myproject.views.abc’)
2 config.add_view(’myproject.views.bazbuz’, name=’bazbuz’,
3 route_name=’abc’)

With the above configuration, the myproject.views.bazbuz view will be invoked when the request
URI is /abc/bazbuz, assuming there is no object contained by the root object with the key bazbuz. A
different request URI, such as /abc/foo/bar, would invoke the default myproject.views.abc
view.

284

CHAPTER

TWENTYSEVEN

USING HOOKS

“Hooks” can be used to influence the behavior of the Pyramid framework in various ways.

27.1 Changing the Not Found View

When Pyramid can’t map a URL to view code, it invokes a not found view, which is a view callable. A
default notfound view exists. The default not found view can be overridden through application configu-
ration.

The not found view callable is a view callable like any other. The view configuration which causes it to
be a “not found” view consists only of naming the pyramid.httpexceptions.HTTPNotFound
class as the context of the view configuration.

If your application uses imperative configuration, you can replace the Not Found view by using the
pyramid.config.Configurator.add_view() method to register an “exception view”:

1 from pyramid.httpexceptions import HTTPNotFound
2 from helloworld.views import notfound_view
3 config.add_view(notfound_view, context=HTTPNotFound)

Replace helloworld.views.notfound_view with a reference to the view callable you want to
use to represent the Not Found view.

Like any other view, the notfound view must accept at least a request parameter, or both context
and request. The request is the current request representing the denied action. The context (if
used in the call signature) will be the instance of the HTTPNotFound exception that caused the view to
be called.

Here’s some sample code that implements a minimal NotFound view callable:

285

27. USING HOOKS

1 from pyramid.httpexceptions import HTTPNotFound
2

3 def notfound_view(request):
4 return HTTPNotFound()

When a NotFound view callable is invoked, it is passed a request. The exception attribute
of the request will be an instance of the HTTPNotFound exception that caused the not found view
to be called. The value of request.exception.message will be a value explaining why the
not found error was raised. This message will be different when the pyramid.debug_notfound
environment setting is true than it is when it is false.

When a NotFound view callable accepts an argument list as described in Alternate View Callable
Argument/Calling Conventions, the context passed as the first argument to the view callable will
be the HTTPNotFound exception instance. If available, the resource context will still be available as
request.context.

27.2 Changing the Forbidden View

When Pyramid can’t authorize execution of a view based on the authorization policy in use, it invokes
a forbidden view. The default forbidden response has a 403 status code and is very plain, but the view
which generates it can be overridden as necessary.

The forbidden view callable is a view callable like any other. The view configuration which causes it to
be a “forbidden” view consists only of naming the pyramid.httpexceptions.HTTPForbidden
class as the context of the view configuration.

You can replace the forbidden view by using the pyramid.config.Configurator.add_view()
method to register an “exception view”:

1 from helloworld.views import forbidden_view
2 from pyramid.httpexceptions import HTTPForbidden
3 config.add_view(forbidden_view, context=HTTPForbidden)

286

27.3. CHANGING THE REQUEST FACTORY

Replace helloworld.views.forbidden_view with a reference to the Python view callable you
want to use to represent the Forbidden view.

Like any other view, the forbidden view must accept at least a request parameter, or both context
and request. The context (available as request.context if you’re using the request-only view
argument pattern) is the context found by the router when the view invocation was denied. The request
is the current request representing the denied action.

Here’s some sample code that implements a minimal forbidden view:

1 from pyramid.views import view_config
2 from pyramid.response import Response
3

4 def forbidden_view(request):
5 return Response(’forbidden’)

When a forbidden view callable is invoked, it is passed a request. The exception attribute of
the request will be an instance of the HTTPForbidden exception that caused the forbidden view to
be called. The value of request.exception.message will be a value explaining why the for-
bidden was raised and request.exception.resultwill be extended information about the for-
bidden exception. These messages will be different when the pyramid.debug_authorization
environment setting is true than it is when it is false.

27.3 Changing the Request Factory

Whenever Pyramid handles a WSGI request, it creates a request object based on the WSGI environment
it has been passed. By default, an instance of the pyramid.request.Request class is created to
represent the request object.

The class (aka “factory”) that Pyramid uses to create a request object instance can be changed by passing
a request_factory argument to the constructor of the configurator. This argument can be either a
callable or a dotted Python name representing a callable.

1 from pyramid.request import Request
2

3 class MyRequest(Request):
4 pass
5

6 config = Configurator(request_factory=MyRequest)

287

27. USING HOOKS

If you’re doing imperative configuration, and you’d rather do it after
you’ve already constructed a configurator it can also be registered via the
pyramid.config.Configurator.set_request_factory() method:

1 from pyramid.config import Configurator
2 from pyramid.request import Request
3

4 class MyRequest(Request):
5 pass
6

7 config = Configurator()
8 config.set_request_factory(MyRequest)

27.4 Using The Before Render Event

Subscribers to the pyramid.events.BeforeRender event may introspect and modify the set of
renderer globals before they are passed to a renderer. This event object iself has a dictionary-like interface
that can be used for this purpose. For example:

1 from pyramid.events import subscriber
2 from pyramid.events import BeforeRender
3

4 @subscriber(BeforeRender)
5 def add_global(event):
6 event[’mykey’] = ’foo’

An object of this type is sent as an event just before a renderer is invoked (but after the application-level
renderer globals factory added via set_renderer_globals_factory, if any, has injected its own
keys into the renderer globals dictionary).

If a subscriber attempts to add a key that already exist in the renderer globals dictionary, a KeyError
is raised. This limitation is enforced because event subscribers do not possess any relative ordering.
The set of keys added to the renderer globals dictionary by all pyramid.events.BeforeRender
subscribers and renderer globals factories must be unique.

See the API documentation for the BeforeRender event interface at
pyramid.interfaces.IBeforeRender.

Another (deprecated) mechanism which allows event subscribers more control when adding renderer
global values exists in Adding Renderer Globals (Deprecated).

288

27.5. ADDING RENDERER GLOBALS (DEPRECATED)

27.5 Adding Renderer Globals (Deprecated)

this feature is deprecated as of Pyramid 1.1. A non-deprecated mechanism which allows event
subscribers to add renderer global values is documented in Using The Before Render Event.

Whenever Pyramid handles a request to perform a rendering (after a view with a renderer= con-
figuration attribute is invoked, or when any of the methods beginning with render within the
pyramid.renderers module are called), renderer globals can be injected into the system values
sent to the renderer. By default, no renderer globals are injected, and the “bare” system values (such
as request, context, and renderer_name) are the only values present in the system dictionary
passed to every renderer.

A callback that Pyramid will call every time a renderer is invoked can be added by passing a
renderer_globals_factory argument to the constructor of the configurator. This callback can
either be a callable object or a dotted Python name representing such a callable.

1 def renderer_globals_factory(system):
2 return {’a’: 1}
3

4 config = Configurator(
5 renderer_globals_factory=renderer_globals_factory)

Such a callback must accept a single positional argument (notionally named system) which will contain
the original system values. It must return a dictionary of values that will be merged into the system
dictionary. See System Values Used During Rendering for description of the values present in the system
dictionary.

If you’re doing imperative configuration, and you’d rather do it after
you’ve already constructed a configurator it can also be registered via the
pyramid.config.Configurator.set_renderer_globals_factory() method:

1 from pyramid.config import Configurator
2

3 def renderer_globals_factory(system):
4 return {’a’: 1}
5

6 config = Configurator()
7 config.set_renderer_globals_factory(renderer_globals_factory)

289

27. USING HOOKS

27.6 Using Response Callbacks

Unlike many other web frameworks, Pyramid does not eagerly create a global response object. Adding a
response callback allows an application to register an action to be performed against whatever response
object is returned by a view, usually in order to mutate the response.

The pyramid.request.Request.add_response_callback() method is used to register a
response callback.

A response callback is a callable which accepts two positional parameters: request and response.
For example:

1 def cache_callback(request, response):
2 """Set the cache_control max_age for the response"""
3 if request.exception is not None:
4 response.cache_control.max_age = 360
5 request.add_response_callback(cache_callback)

No response callback is called if an unhandled exception happens in application code, or if the response
object returned by a view callable is invalid. Response callbacks are, however, invoked when a exception
view is rendered successfully: in such a case, the request.exception attribute of the request when
it enters a response callback will be an exception object instead of its default value of None.

Response callbacks are called in the order they’re added (first-to-most-recently-added). All response
callbacks are called after the NewResponse event is sent. Errors raised by response callbacks are not
handled specially. They will be propagated to the caller of the Pyramid router application.

A response callback has a lifetime of a single request. If you want a response callback to happen as
the result of every request, you must re-register the callback into every new request (perhaps within a
subscriber of a NewRequest event).

27.7 Using Finished Callbacks

A finished callback is a function that will be called unconditionally by the Pyramid router at the very
end of request processing. A finished callback can be used to perform an action at the end of a request
unconditionally.

The pyramid.request.Request.add_finished_callback() method is used to register a
finished callback.

A finished callback is a callable which accepts a single positional parameter: request. For example:

290

27.8. CHANGING THE TRAVERSER

1 import transaction
2

3 def commit_callback(request):
4 ’’’commit or abort the transaction associated with request’’’
5 if request.exception is not None:
6 transaction.abort()
7 else:
8 transaction.commit()
9 request.add_finished_callback(commit_callback)

Finished callbacks are called in the order they’re added (first-to-most-recently-added). Finished callbacks
(unlike a response callback) are always called, even if an exception happens in application code that
prevents a response from being generated.

The set of finished callbacks associated with a request are called very late in the processing of that request;
they are essentially the very last thing called by the router before a request “ends”. They are called
after response processing has already occurred in a top-level finally: block within the router request
processing code. As a result, mutations performed to the request provided to a finished callback will
have no meaningful effect, because response processing will have already occurred, and the request’s
scope will expire almost immediately after all finished callbacks have been processed.

It is often necessary to tell whether an exception occurred within view callable code from within a finished
callback: in such a case, the request.exception attribute of the request when it enters a response
callback will be an exception object instead of its default value of None.

Errors raised by finished callbacks are not handled specially. They will be propagated to the caller of the
Pyramid router application.

A finished callback has a lifetime of a single request. If you want a finished callback to happen as the result
of every request, you must re-register the callback into every new request (perhaps within a subscriber of
a NewRequest event).

27.8 Changing the Traverser

The default traversal algorithm that Pyramid uses is explained in The Traversal Algorithm. Though it is
rarely necessary, this default algorithm can be swapped out selectively for a different traversal pattern via
configuration.

291

27. USING HOOKS

1 from pyramid.interfaces import ITraverser
2 from zope.interface import Interface
3 from myapp.traversal import Traverser
4

5 config.registry.registerAdapter(Traverser, (Interface,), ITraverser)

In the example above, myapp.traversal.Traverser is assumed to be a class that implements the
following interface:

1 class Traverser(object):
2 def __init__(self, root):
3 """ Accept the root object returned from the root factory """
4

5 def __call__(self, request):
6 """ Return a dictionary with (at least) the keys ‘‘root‘‘,
7 ‘‘context‘‘, ‘‘view_name‘‘, ‘‘subpath‘‘, ‘‘traversed‘‘,
8 ‘‘virtual_root‘‘, and ‘‘virtual_root_path‘‘. These values are
9 typically the result of a resource tree traversal. ‘‘root‘‘

10 is the physical root object, ‘‘context‘‘ will be a resource
11 object, ‘‘view_name‘‘ will be the view name used (a Unicode
12 name), ‘‘subpath‘‘ will be a sequence of Unicode names that
13 followed the view name but were not traversed, ‘‘traversed‘‘
14 will be a sequence of Unicode names that were traversed
15 (including the virtual root path, if any) ‘‘virtual_root‘‘
16 will be a resource object representing the virtual root (or the
17 physical root if traversal was not performed), and
18 ‘‘virtual_root_path‘‘ will be a sequence representing the
19 virtual root path (a sequence of Unicode names) or None if
20 traversal was not performed.
21

22 Extra keys for special purpose functionality can be added as
23 necessary.
24

25 All values returned in the dictionary will be made available
26 as attributes of the ‘‘request‘‘ object.
27 """

More than one traversal algorithm can be active at the same time. For instance, if your root factory returns
more than one type of object conditionally, you could claim that an alternate traverser adapter is for only
one particular class or interface. When the root factory returned an object that implemented that class or
interface, a custom traverser would be used. Otherwise, the default traverser would be used. For example:

1 from pyramid.interfaces import ITraverser
2 from zope.interface import Interface

292

27.9. CHANGING HOW PYRAMID.REQUEST.REQUEST.RESOURCE_URL() GENERATES A
URL

3 from myapp.traversal import Traverser
4 from myapp.resources import MyRoot
5

6 config.registry.registerAdapter(Traverser, (MyRoot,), ITraverser)

If the above stanza was added to a Pyramid __init__.py file’s main function, Pyramid would use
the myapp.traversal.Traverser only when the application root factory returned an instance of
the myapp.resources.MyRoot object. Otherwise it would use the default Pyramid traverser to do
traversal.

27.9 Changing How pyramid.request.Request.resource_url()
Generates a URL

When you add a traverser as described in Changing the Traverser, it’s often convenient to continue to
use the pyramid.request.Request.resource_url() API. However, since the way traversal
is done will have been modified, the URLs it generates by default may be incorrect.

If you’ve added a traverser, you can change how resource_url() generates a URL for a specific
type of resource by adding a registerAdapter call for pyramid.interfaces.IContextURL to your
application:

1 from pyramid.interfaces import ITraverser
2 from zope.interface import Interface
3 from myapp.traversal import URLGenerator
4 from myapp.resources import MyRoot
5

6 config.registry.registerAdapter(URLGenerator, (MyRoot, Interface),
7 IContextURL)

In the above example, the myapp.traversal.URLGenerator class will be used to pro-
vide services to resource_url() any time the context passed to resource_url is of class
myapp.resources.MyRoot. The second argument in the (MyRoot, Interface) tuple rep-
resents the type of interface that must be possessed by the request (in this case, any interface, represented
by zope.interface.Interface).

The API that must be implemented by a class that provides IContextURL is as follows:

293

27. USING HOOKS

1 from zope.interface import Interface
2

3 class IContextURL(Interface):
4 """ An adapter which deals with URLs related to a context.
5 """
6 def __init__(self, context, request):
7 """ Accept the context and request """
8

9 def virtual_root(self):
10 """ Return the virtual root object related to a request and the
11 current context"""
12

13 def __call__(self):
14 """ Return a URL that points to the context """

The default context URL generator is available for perusal as the class
pyramid.traversal.TraversalContextURL in the traversal module of the Pylons GitHub
Pyramid repository.

27.10 Changing How Pyramid Treats View Responses

It is possible to control how Pyramid treats the result of calling a view callable on a per-type basis by
using a hook involving pyramid.config.Configurator.add_response_adapter() or the
response_adapter decorator.

This feature is new as of Pyramid 1.1.

Pyramid, in various places, adapts the result of calling a view callable to the IResponse interface
to ensure that the object returned by the view callable is a “true” response object. The vast ma-
jority of time, the result of this adaptation is the result object itself, as view callables written by
“civilians” who read the narrative documentation contained in this manual will always return some-
thing that implements the IResponse interface. Most typically, this will be an instance of the
pyramid.response.Response class or a subclass. If a civilian returns a non-Response object
from a view callable that isn’t configured to use a renderer, he will typically expect the router to raise an
error. However, you can hook Pyramid in such a way that users can return arbitrary values from a view
callable by providing an adapter which converts the arbitrary return value into something that implements
IResponse.

For example, if you’d like to allow view callables to return bare string objects (without requiring a a
renderer to convert a string to a response object), you can register an adapter which converts the string to
a Response:

294

http://github.com/Pylons/pyramid/blob/master/pyramid/traversal.py

27.10. CHANGING HOW PYRAMID TREATS VIEW RESPONSES

1 from pyramid.response import Response
2

3 def string_response_adapter(s):
4 response = Response(s)
5 return response
6

7 # config is an instance of pyramid.config.Configurator
8

9 config.add_response_adapter(string_response_adapter, str)

Likewise, if you want to be able to return a simplified kind of response object from view callables, you
can use the IResponse hook to register an adapter to the more complex IResponse interface:

1 from pyramid.response import Response
2

3 class SimpleResponse(object):
4 def __init__(self, body):
5 self.body = body
6

7 def simple_response_adapter(simple_response):
8 response = Response(simple_response.body)
9 return response

10

11 # config is an instance of pyramid.config.Configurator
12

13 config.add_response_adapter(simple_response_adapter, SimpleResponse)

If you want to implement your own Response object instead of using the
pyramid.response.Response object in any capacity at all, you’ll have to make sure the
object implements every attribute and method outlined in pyramid.interfaces.IResponse and
you’ll have to ensure that it’s marked up with zope.interface.implements(IResponse):

1 from pyramid.interfaces import IResponse
2 from zope.interface import implements
3

4 class MyResponse(object):
5 implements(IResponse)
6 # ... an implementation of every method and attribute
7 # documented in IResponse should follow ...

When an alternate response object implementation is returned by a view callable, if that object asserts
that it implements IResponse (via zope.interface.implements(IResponse)) , an adapter
needn’t be registered for the object; Pyramid will use it directly.

295

27. USING HOOKS

An IResponse adapter for webob.Response (as opposed to pyramid.response.Response) is
registered by Pyramid by default at startup time, as by their nature, instances of this class (and instances of
subclasses of the class) will natively provide IResponse. The adapter registered for webob.Response
simply returns the response object.

Instead of using pyramid.config.Configurator.add_response_adapter(), you can use
the pyramid.response.response_adapter decorator:

1 from pyramid.response import Response
2 from pyramid.response import response_adapter
3

4 @response_adapter(str)
5 def string_response_adapter(s):
6 response = Response(s)
7 return response

The above example, when scanned, has the same effect as:

config.add_response_adapter(string_response_adapter, str)

The response_adapter decorator will have no effect until activated by a scan.

27.11 Using a View Mapper

The default calling conventions for view callables are documented in the Views chapter. You can change
the way users define view callables by employing a view mapper.

A view mapper is an object that accepts a set of keyword arguments and which returns a callable. The
returned callable is called with the view callable object. The returned callable should itself return another
callable which can be called with the “internal calling protocol” (context, request).

You can use a view mapper in a number of ways:

• by setting a __view_mapper__ attribute (which is the view mapper object) on the view callable
itself

• by passing the mapper object to pyramid.config.Configurator.add_view() (or its
declarative/decorator equivalents) as the mapper argument.

• by registering a default view mapper.

296

27.11. USING A VIEW MAPPER

Here’s an example of a view mapper that emulates (somewhat) a Pylons “controller”. The mapper is
initialized with some keyword arguments. Its __call__ method accepts the view object (which will be
a class). It uses the attr keyword argument it is passed to determine which attribute should be used as an
action method. The wrapper method it returns accepts (context, request) and returns the result of
calling the action method with keyword arguments implied by the matchdict after popping the action
out of it. This somewhat emulates the Pylons style of calling action methods with routing parameters
pulled out of the route matching dict as keyword arguments.

1 # framework
2

3 class PylonsControllerViewMapper(object):
4 def __init__(self, **kw):
5 self.kw = kw
6

7 def __call__(self, view):
8 attr = self.kw[’attr’]
9 def wrapper(context, request):

10 matchdict = request.matchdict.copy()
11 matchdict.pop(’action’, None)
12 inst = view()
13 meth = getattr(inst, attr)
14 return meth(**matchdict)
15 return wrapper
16

17 class BaseController(object):
18 __view_mapper__ = PylonsControllerViewMapper

A user might make use of these framework components like so:

1 # user application
2

3 from pyramid.response import Response
4 from pyramid.config import Configurator
5 import pyramid_handlers
6 from paste.httpserver import serve
7

8 class MyController(BaseController):
9 def index(self, id):

10 return Response(id)
11

12 if __name__ == ’__main__’:
13 config = Configurator()
14 config.include(pyramid_handlers)
15 config.add_handler(’one’, ’/{id}’, MyController, action=’index’)
16 config.add_handler(’two’, ’/{action}/{id}’, MyController)

297

27. USING HOOKS

17 serve(config.make_wsgi_app())

The pyramid.config.Configurator.set_view_mapper() method can be used to set a de-
fault view mapper (overriding the superdefault view mapper used by Pyramid itself).

A single view registration can use a view mapper by passing the mapper as the mapper argument to
add_view().

27.12 Registering Configuration Decorators

Decorators such as view_config don’t change the behavior of the functions or classes they’re deco-
rating. Instead, when a scan is performed, a modified version of the function or class is registered with
Pyramid.

You may wish to have your own decorators that offer such behaviour. This is possible by using the
Venusian package in the same way that it is used by Pyramid.

By way of example, let’s suppose you want to write a decorator that registers the function it wraps with
a Zope Component Architecture “utility” within the application registry provided by Pyramid. The ap-
plication registry and the utility inside the registry is likely only to be available once your application’s
configuration is at least partially completed. A normal decorator would fail as it would be executed before
the configuration had even begun.

However, using Venusian, the decorator could be written as follows:

1 import venusian
2 from mypackage.interfaces import IMyUtility
3

4 class registerFunction(object):
5

6 def __init__(self, path):
7 self.path = path
8

9 def register(self, scanner, name, wrapped):
10 registry = scanner.config.registry
11 registry.getUtility(IMyUtility).register(
12 self.path, wrapped)
13

14 def __call__(self, wrapped):
15 venusian.attach(wrapped, self.register)
16 return wrapped

298

27.13. REGISTERING “TWEENS”

This decorator could then be used to register functions throughout your code:

1 @registerFunction(’/some/path’)
2 def my_function():
3 do_stuff()

However, the utility would only be looked up when a scan was performed, enabling you to set up the
utility in advance:

1 from paste.httpserver import serve
2 from pyramid.config import Configurator
3 from mypackage.interfaces import IMyUtility
4

5 class UtilityImplementation:
6

7 implements(IMyUtility)
8

9 def __init__(self):
10 self.registrations = {}
11

12 def register(self, path, callable_):
13 self.registrations[path] = callable_
14

15 if __name__ == ’__main__’:
16 config = Configurator()
17 config.registry.registerUtility(UtilityImplementation())
18 config.scan()
19 app = config.make_wsgi_app()
20 serve(app, host=’0.0.0.0’)

For full details, please read the Venusian documentation.

27.13 Registering “Tweens”

Tweens are a feature which were added in Pyramid 1.2. They are not available in any previous
version.

A tween (a contraction of the word “between”) is a bit of code that sits between the Pyramid router’s main
request handling function and the upstream WSGI component that uses Pyramid as its “app”. This is a

299

http://docs.repoze.org/venusian

27. USING HOOKS

feature that may be used by Pyramid framework extensions, to provide, for example, Pyramid-specific
view timing support bookkeeping code that examines exceptions before they are returned to the upstream
WSGI application. Tweens behave a bit like WSGI middleware but they have the benefit of running in a
context in which they have access to the Pyramid application registry as well as the Pyramid rendering
machinery.

27.13.1 Creating a Tween Factory

To make use of tweens, you must construct a “tween factory”. A tween factory must be a globally
importable callable which accepts two arguments: handler and registry. handler will be the
either the main Pyramid request handling function or another tween. registry will be the Pyramid
application registry represented by this Configurator. A tween factory must return a tween when it is
called.

A tween is a callable which accepts a request object and returns a two-tuple a response object.

Here’s an example of a tween factory:

1 # in a module named myapp.tweens
2

3 import time
4 from pyramid.settings import asbool
5 import logging
6

7 log = logging.getLogger(__name__)
8

9 def timing_tween_factory(handler, registry):
10 if asbool(registry.settings.get(’do_timing’)):
11 # if timing support is enabled, return a wrapper
12 def timing_tween(request):
13 start = time.time()
14 try:
15 response = handler(request)
16 finally:
17 end = time.time()
18 log.debug(’The request took %s seconds’ %
19 (end - start))
20 return response
21 return timing_tween
22 # if timing support is not enabled, return the original
23 # handler
24 return handler

300

27.13. REGISTERING “TWEENS”

If you remember, a tween is an object which accepts a request object and which returns a response
argument. The request argument to a tween will be the request created by Pyramid’s router when it
receives a WSGI request. The response object will be generated by the downstream Pyramid application
and it should be returned by the tween.

In the above example, the tween factory defines a timing_tween tween and returns it if
asbool(registry.settings.get(’do_timing’)) is true. It otherwise simply returns the
handler it was given. The registry.settings attribute is a handle to the deployment settings pro-
vided by the user (usually in an .ini file). In this case, if the user has defined a do_timing setting,
and that setting is True, the user has said she wants to do timing, so the tween factory returns the timing
tween; it otherwise just returns the handler it has been provided, preventing any timing.

The example timing tween simply records the start time, calls the downstream handler, logs the number
of seconds consumed by the downstream handler, and returns the response.

27.13.2 Registering an Implicit Tween Factory

Once you’ve created a tween factory, you can register it into the implicit tween chain using the
pyramid.config.Configurator.add_tween() method using its dotted Python name.

Here’s an example of registering the a tween factory as an “implicit” tween in a Pyramid application:

1 from pyramid.config import Configurator
2 config = Configurator()
3 config.add_tween(’myapp.tweens.timing_tween_factory’)

Note that you must use a dotted Python name as the first argument to
pyramid.config.Configurator.add_tween(); this must point at a tween factory. You
cannot pass the tween factory object itself to the method: it must be dotted Python name that points to
a globally importable object. In the above example, we assume that a timing_tween_factory
tween factory was defined in a module named myapp.tweens, so the tween factory is importable as
myapp.tweens.timing_tween_factory.

When you use pyramid.config.Configurator.add_tween(), you’re instructing the system
to use your tween factory at startup time unless the user has provided an explicit tween list in his con-
figuration. This is what’s meant by an “implicit” tween. A user can always elect to supply an explicit
tween list, reordering or disincluding implicitly added tweens. See Explicit Tween Ordering for more
information about explicit tween ordering.

If more than one call to pyramid.config.Configurator.add_tween() is made within a sin-
gle application configuration, the tweens will be chained together at application startup time. The first

301

27. USING HOOKS

tween factory added via add_tween will be called with the Pyramid exception view tween factory as
its handler argument, then the tween factory added directly after that one will be called with the result
of the first tween factory as its handler argument, and so on, ad infinitum until all tween factories have
been called. The Pyramid router will use the outermost tween produced by this chain (the tween generated
by the very last tween factory added) as its request handler function. For example:

1 from pyramid.config import Configurator
2

3 config = Configurator()
4 config.add_tween(’myapp.tween_factory1’)
5 config.add_tween(’myapp.tween_factory2’)

The above example will generate an implicit tween chain that looks like this:

INGRESS (implicit)
myapp.tween_factory2
myapp.tween_factory1
pyramid.tweens.excview_tween_factory (implicit)
MAIN (implicit)

27.13.3 Suggesting Implicit Tween Ordering

By default, as described above, the ordering of the chain is controlled entirely by the relative ordering
of calls to pyramid.config.Configurator.add_tween(). However, the caller of add_tween
can provide an optional hint that can influence the implicit tween chain ordering by supplying under or
over (or both) arguments to add_tween(). These hints are only used used when an explicit tween
ordering is not used. See Explicit Tween Ordering for a description of how to set an explicit tween
ordering.

Allowable values for under or over (or both) are:

• None (the default).

• A dotted Python name to a tween factory: a string representing the predicted dotted name of a
tween factory added in a call to add_tween in the same configuration session.

• One of the constants pyramid.tweens.MAIN, pyramid.tweens.INGRESS, or
pyramid.tweens.EXCVIEW.

• An iterable of any combination of the above. This allows the user to specify fallbacks if the desired
tween is not included, as well as compatibility with multiple other tweens.

302

27.13. REGISTERING “TWEENS”

Effectively, under means “closer to the main Pyramid application than”, over means “closer to the
request ingress than”.

For example, the following call to add_tween() will attempt to place the tween factory represented by
myapp.tween_factory directly ‘above’ (in paster ptweens order) the main Pyramid request
handler.

1 import pyramid.tweens
2

3 config.add_tween(’myapp.tween_factory’, over=pyramid.tweens.MAIN)

The above example will generate an implicit tween chain that looks like this:

INGRESS (implicit)
pyramid.tweens.excview_tween_factory (implicit)
myapp.tween_factory
MAIN (implicit)

Likewise, calling the following call to add_tween() will attempt to place this tween factory ‘above’
the main handler but ‘below’ a separately added tween factory:

1 import pyramid.tweens
2

3 config.add_tween(’myapp.tween_factory1’,
4 over=pyramid.tweens.MAIN)
5 config.add_tween(’myapp.tween_factory2’,
6 over=pyramid.tweens.MAIN,
7 under=’myapp.tween_factory1’)

The above example will generate an implicit tween chain that looks like this:

INGRESS (implicit)
pyramid.tweens.excview_tween_factory (implicit)
myapp.tween_factory1
myapp.tween_factory2
MAIN (implicit)

Specifying neither over nor under is equivalent to specifying under=INGRESS.

If all options for under (or over) cannot be found in the current configuration, it is an error. If some op-
tions are specified purely for compatibilty with other tweens, just add a fallback of MAIN or INGRESS.
For example, under=(’someothertween’, ’someothertween2’, INGRESS). This con-
straint will require the tween to be located under both the ‘someothertween’ tween, the ‘someothertween2’
tween, and INGRESS. If any of these is not in the current configuration, this constraint will only organize
itself based on the tweens that are present.

303

27. USING HOOKS

27.13.4 Explicit Tween Ordering

Implicit tween ordering is obviously only best-effort. Pyramid will attempt to provide an implicit order of
tweens as best it can using hints provided by calls to add_tween(), but because it’s only best-effort, if
very precise tween ordering is required, the only surefire way to get it is to use an explicit tween order. The
deploying user can override the implicit tween inclusion and ordering implied by calls to add_tween()
entirely by using the pyramid.tweens settings value. When used, this settings value must be a list of
Python dotted names which will override the ordering (and inclusion) of tween factories in the implicit
tween chain. For example:

[app:main]
use = egg:MyApp
pyramid.reload_templates = true
pyramid.debug_authorization = false
pyramid.debug_notfound = false
pyramid.debug_routematch = false
pyramid.debug_templates = true
pyramid.tweens = myapp.my_cool_tween_factory

pyramid.tweens.excview_tween_factory

In the above configuration, calls made during configuration to
pyramid.config.Configurator.add_tween() are ignored, and the user is telling the
system to use the tween factories he has listed in the pyramid.tweens configuration setting
(each is a dotted Python name which points to a tween factory) instead of any tween factories
added via pyramid.config.Configurator.add_tween(). The first tween factory in the
pyramid.tweens list will be used as the producer of the effective Pyramid request handling function;
it will wrap the tween factory declared directly “below” it, ad infinitum. The “main” Pyramid request
handler is implicit, and always “at the bottom”.

Pyramid’s own exception view handling logic is implemented as a tween factory func-
tion: pyramid.tweens.excview_tween_factory(). If Pyramid exception view han-
dling is desired, and tween factories are specified via the pyramid.tweens configuration set-
ting, the pyramid.tweens.excview_tween_factory() function must be added to the
pyramid.tweens configuration setting list explicitly. If it is not present, Pyramid will not per-
form exception view handling.

27.13.5 Tween Conflicts and Ordering Cycles

Pyramid will prevent the same tween factory from being added to the tween chain more than
once using configuration conflict detection. If you wish to add the same tween factory more than

304

27.13. REGISTERING “TWEENS”

once in a configuration, you should either: a) use a tween factory that is a separate globally im-
portable instance object from the factory that it conflicts with b) use a function or class as a
tween factory with the same logic as the other tween factory it conflicts with but with a different
__name__ attribute or c) call pyramid.config.Configurator.commit() between calls to
pyramid.config.Configurator.add_tween().

If a cycle is detected in implicit tween ordering when over and under are used in any call to
“add_tween”, an exception will be raised at startup time.

27.13.6 Displaying Tween Ordering

The paster ptweens command-line utility can be used to report the current implict and explicit tween
chains used by an application. See Displaying “Tweens”.

305

27. USING HOOKS

306

CHAPTER

TWENTYEIGHT

ADVANCED CONFIGURATION

To support application extensibility, the Pyramid Configurator, by default, detects configuration conflicts
and allows you to include configuration imperatively from other packages or modules. It also, by default,
performs configuration in two separate phases. This allows you to ignore relative configuration statement
ordering in some circumstances.

28.1 Conflict Detection

Here’s a familiar example of one of the simplest Pyramid applications, configured imperatively:

1 from paste.httpserver import serve
2 from pyramid.config import Configurator
3 from pyramid.response import Response
4

5 def hello_world(request):
6 return Response(’Hello world!’)
7

8 if __name__ == ’__main__’:
9 config = Configurator()

10 config.add_view(hello_world)
11 app = config.make_wsgi_app()
12 serve(app, host=’0.0.0.0’)

When you start this application, all will be OK. However, what happens if we try to add another view to
the configuration with the same set of predicate arguments as one we’ve already added?

307

28. ADVANCED CONFIGURATION

1 from paste.httpserver import serve
2 from pyramid.config import Configurator
3 from pyramid.response import Response
4

5 def hello_world(request):
6 return Response(’Hello world!’)
7

8 def goodbye_world(request):
9 return Response(’Goodbye world!’)

10

11 if __name__ == ’__main__’:
12 config = Configurator()
13

14 config.add_view(hello_world, name=’hello’)
15

16 # conflicting view configuration
17 config.add_view(goodbye_world, name=’hello’)
18

19 app = config.make_wsgi_app()
20 serve(app, host=’0.0.0.0’)

The application now has two conflicting view configuration statements. When we try to start it again, it
won’t start. Instead, we’ll receive a traceback that ends something like this:

1 Traceback (most recent call last):
2 File "app.py", line 12, in <module>
3 app = config.make_wsgi_app()
4 File "pyramid/config.py", line 839, in make_wsgi_app
5 self.commit()
6 File "pyramid/pyramid/config.py", line 473, in commit
7 self._ctx.execute_actions()
8 ... more code ...
9 pyramid.exceptions.ConfigurationConflictError:

10 Conflicting configuration actions
11 For: (’view’, None, ’’, None, <InterfaceClass pyramid.interfaces.IView>,
12 None, None, None, None, None, False, None, None, None)
13 (’app.py’, 14, ’<module>’, ’config.add_view(hello_world)’)
14 (’app.py’, 17, ’<module>’, ’config.add_view(hello_world)’)

This traceback is trying to tell us:

• We’ve got conflicting information for a set of view configuration statements (The For: line).

• There are two statements which conflict, shown beneath the For: line:
config.add_view(hello_world. ’hello’) on line 14 of app.py, and
config.add_view(goodbye_world, ’hello’) on line 17 of app.py.

308

28.1. CONFLICT DETECTION

These two configuration statements are in conflict because we’ve tried to tell the system that the set
of predicate values for both view configurations are exactly the same. Both the hello_world and
goodbye_world views are configured to respond under the same set of circumstances. This circum-
stance: the view name (represented by the name= predicate) is hello.

This presents an ambiguity that Pyramid cannot resolve. Rather than allowing the circumstance to go
unreported, by default Pyramid raises a ConfigurationConflictError error and prevents the
application from running.

Conflict detection happens for any kind of configuration: imperative configuration or configuration that
results from the execution of a scan.

28.1.1 Manually Resolving Conflicts

There are a number of ways to manually resolve conflicts: the “right” way, by strategically using
pyramid.config.Configurator.commit(), or by using an “autocommitting” configurator.

The Right Thing

The most correct way to resolve conflicts is to “do the needful”: change your configuration code
to not have conflicting configuration statements. The details of how this is done depends en-
tirely on the configuration statements made by your application. Use the detail provided in the
ConfigurationConflictError to track down the offending conflicts and modify your configu-
ration code accordingly.

If you’re getting a conflict while trying to extend an existing application, and that application has a func-
tion which performs configuration like this one:

1 def add_routes(config):
2 config.add_route(...)

Don’t call this function directly with config as an argument. Instead, use
pyramid.config.Configuration.include():

1 config.include(add_routes)

Using include() instead of calling the function directly provides a modicum of automated conflict res-
olution, with the configuration statements you define in the calling code overriding those of the included
function. See also Automatic Conflict Resolution and Including Configuration from External Sources.

309

28. ADVANCED CONFIGURATION

Using config.commit()

You can manually commit a configuration by using the commit() method between configuration calls.
For example, we prevent conflicts from occurring in the application we examined previously as the result
of adding a commit. Here’s the application that generates conflicts:

1 from paste.httpserver import serve
2 from pyramid.config import Configurator
3 from pyramid.response import Response
4

5 def hello_world(request):
6 return Response(’Hello world!’)
7

8 def goodbye_world(request):
9 return Response(’Goodbye world!’)

10

11 if __name__ == ’__main__’:
12 config = Configurator()
13

14 config.add_view(hello_world, name=’hello’)
15

16 # conflicting view configuration
17 config.add_view(goodbye_world, name=’hello’)
18

19 app = config.make_wsgi_app()
20 serve(app, host=’0.0.0.0’)

We can prevent the two add_view calls from conflicting by issuing a call to commit() between them:

1 from paste.httpserver import serve
2 from pyramid.config import Configurator
3 from pyramid.response import Response
4

5 def hello_world(request):
6 return Response(’Hello world!’)
7

8 def goodbye_world(request):
9 return Response(’Goodbye world!’)

10

11 if __name__ == ’__main__’:
12 config = Configurator()
13

14 config.add_view(hello_world, name=’hello’)
15

16 config.commit() # commit any pending configuration actions

310

28.1. CONFLICT DETECTION

17

18 # no-longer-conflicting view configuration
19 config.add_view(goodbye_world, name=’hello’)
20

21 app = config.make_wsgi_app()
22 serve(app, host=’0.0.0.0’)

In the above example we’ve issued a call to commit() between the two add_view calls. commit()
will cause any pending configuration statements.

Calling commit() is safe at any time. It executes all pending configuration actions and leaves the
configuration action list “clean”.

Note that commit() has no effect when you’re using an autocommitting configurator (see Using An
Autocommitting Configurator).

Using An Autocommitting Configurator

You can also use a heavy hammer to circumvent conflict detection by using a configurator constructor
parameter: autocommit=True. For example:

1 from pyramid.config import Configurator
2

3 if __name__ == ’__main__’:
4 config = Configurator(autocommit=True)

When the autocommit parameter passed to the Configurator is True, conflict detection (and Two-
Phase Configuration) is disabled. Configuration statements will be executed immediately, and succeeding
statements will override preceding ones.

commit() has no effect when autocommit is True.

If you use a Configurator in code that performs unit testing, it’s usually a good idea to use an auto-
committing Configurator, because you are usually unconcerned about conflict detection or two-phase
configuration in test code.

311

28. ADVANCED CONFIGURATION

28.1.2 Automatic Conflict Resolution

If your code uses the include() method to include external configuration, some conflicts are automat-
ically resolved. Configuration statements that are made as the result of an “include” will be overridden
by configuration statements that happen within the caller of the “include” method.

Automatic conflict resolution supports this goal: if a user wants to reuse a Pyramid application, and they
want to customize the configuration of this application without hacking its code “from outside”, they can
“include” a configuration function from the package and override only some of its configuration state-
ments within the code that does the include. No conflicts will be generated by configuration statements
within the code which does the including, even if configuration statements in the included code would
conflict if it was moved “up” to the calling code.

28.1.3 Methods Which Provide Conflict Detection

These are the methods of the configurator which provide conflict detection:

add_view(), add_route(), add_renderer(), set_request_factory(),
set_renderer_globals_factory(), set_locale_negotiator() and
set_default_permission().

add_static_view() also indirectly provides conflict detection, because it’s implemented in terms of
the conflict-aware add_route and add_view methods.

28.2 Including Configuration from External Sources

Some application programmers will factor their configuration code in such a way that it is easy to reuse
and override configuration statements. For example, such a developer might factor out a function used to
add routes to his application:

1 def add_routes(config):
2 config.add_route(...)

Rather than calling this function directly with config as an argument. Instead, use
pyramid.config.Configuration.include():

312

28.3. TWO-PHASE CONFIGURATION

1 config.include(add_routes)

Using include rather than calling the function directly will allow Automatic Conflict Resolution to
work.

include() can also accept a module as an argument:

1 import myapp
2

3 config.include(myapp)

For this to work properly, the myapp module must contain a callable with the special name includeme,
which should perform configuration (like the add_routes callable we showed above as an example).

include() can also accept a dotted Python name to a function or a module.

28.3 Two-Phase Configuration

When a non-autocommitting Configurator is used to do configuration (the default), configuration execu-
tion happens in two phases. In the first phase, “eager” configuration actions (actions that must happen
before all others, such as registering a renderer) are executed, and discriminators are computed for each
of the actions that depend on the result of the eager actions. In the second phase, the discriminators of all
actions are compared to do conflict detection.

Due to this, for configuration methods that have no internal ordering constraints, execution order of
configuration method calls is not important. For example, the relative ordering of add_view() and
add_renderer() is unimportant when a non-autocommitting configurator is used. This code snippet:

1 config.add_view(’some.view’, renderer=’path_to_custom/renderer.rn’)
2 config.add_renderer(’.rn’, SomeCustomRendererFactory)

Has the same result as:

1 config.add_renderer(’.rn’, SomeCustomRendererFactory)
2 config.add_view(’some.view’, renderer=’path_to_custom/renderer.rn’)

313

28. ADVANCED CONFIGURATION

Even though the view statement depends on the registration of a custom renderer, due to two-phase con-
figuration, the order in which the configuration statements are issued is not important. add_view will
be able to find the .rn renderer even if add_renderer is called after add_view.

The same is untrue when you use an autocommitting configurator (see Using An Autocommitting Config-
urator). When an autocommitting configurator is used, two-phase configuration is disabled, and configu-
ration statements must be ordered in dependency order.

Some configuration methods, such as add_route() have internal ordering constraints: the routes they
imply require relative ordering. Such ordering constraints are not absolved by two-phase configuration.
Routes are still added in configuration execution order.

28.4 Adding Methods to the Configurator via add_directive

Framework extension writers can add arbitrary methods to a Configurator by using the
pyramid.config.Configurator.add_directive() method of the configurator. This makes
it possible to extend a Pyramid configurator in arbitrary ways, and allows it to perform application-specific
tasks more succinctly.

The add_directive() method accepts two positional arguments: a method name and a callable
object. The callable object is usually a function that takes the configurator instance as its first argument
and accepts other arbitrary positional and keyword arguments. For example:

from pyramid.events import NewRequest
from pyramid.config import Configurator

def add_newrequest_subscriber(config, subscriber):
config.add_subscriber(subscriber, NewRequest).

if __name__ == ’__main__’:
config = Configurator()
config.add_directive(’add_newrequest_subscriber’,

add_newrequest_subscriber)

Once add_directive() is called, a user can then call the method by its given name as if it were a
built-in method of the Configurator:

1 def mysubscriber(event):
2 print event.request
3

4 config.add_newrequest_subscriber(mysubscriber)

314

28.4. ADDING METHODS TO THE CONFIGURATOR VIA ADD_DIRECTIVE

A call to add_directive() is often “hidden” within an includeme function within a “frameworky”
package meant to be included as per Including Configuration from External Sources via include().
For example, if you put this code in a package named pyramid_subscriberhelpers:

def includeme(config)
config.add_directive(’add_newrequest_subscriber’,

add_newrequest_subscriber)

The user of the add-on package pyramid_subscriberhelpers would then be able to install it and
subsequently do:

1 def mysubscriber(event):
2 print event.request
3

4 from pyramid.config import Configurator
5 config = Configurator()
6 config.include(’pyramid_subscriberhelpers’)
7 config.add_newrequest_subscriber(mysubscriber)

315

28. ADVANCED CONFIGURATION

316

CHAPTER

TWENTYNINE

EXTENDING AN EXISTING
PYRAMID APPLICATION

If a Pyramid developer has obeyed certain constraints while building an application, a third party should
be able to change the application’s behavior without needing to modify its source code. The behavior of
a Pyramid application that obeys certain constraints can be overridden or extended without modification.

We’ll define some jargon here for the benefit of identifying the parties involved in such an effort.

Developer The original application developer.

Integrator Another developer who wishes to reuse the application written by the original application
developer in an unanticipated context. He may also wish to modify the original application without
changing the original application’s source code.

29.1 The Difference Between “Extensible” and “Pluggable”
Applications

Other web frameworks, such as Django, advertise that they allow developers to create “pluggable appli-
cations”. They claim that if you create an application in a certain way, it will be integratable in a sensible,
structured way into another arbitrarily-written application or project created by a third-party developer.

Pyramid, as a platform, does not claim to provide such a feature. The platform provides no guarantee that
you can create an application and package it up such that an arbitrary integrator can use it as a subcom-
ponent in a larger Pyramid application or project. Pyramid does not mandate the constraints necessary

317

29. EXTENDING AN EXISTING PYRAMID APPLICATION

for such a pattern to work satisfactorily. Because Pyramid is not very “opinionated”, developers are able
to use wildly different patterns and technologies to build an application. A given Pyramid application
may happen to be reusable by a particular third party integrator, because the integrator and the original
developer may share similar base technology choices (such as the use of a particular relational database
or ORM). But the same application may not be reusable by a different developer, because he has made
different technology choices which are incompatible with the original developer’s.

As a result, the concept of a “pluggable application” is left to layers built above Pyramid, such as a “CMS”
layer or “application server” layer. Such layers are apt to provide the necessary “opinions” (such as
mandating a storage layer, a templating system, and a structured, well-documented pattern of registering
that certain URLs map to certain bits of code) which makes the concept of a “pluggable application”
possible. “Pluggable applications”, thus, should not plug in to Pyramid itself but should instead plug into
a system written atop Pyramid.

Although it does not provide for “pluggable applications”, Pyramid does provide a rich set of mechanisms
which allows for the extension of a single existing application. Such features can be used by frameworks
built using Pyramid as a base. All Pyramid applications may not be pluggable, but all Pyramid applica-
tions are extensible.

29.2 Rules for Building An Extensible Application

There is only one rule you need to obey if you want to build a maximally extensible Pyramid application:
as a developer, you should factor any overrideable imperative configuration you’ve created into func-
tions which can be used via pyramid.config.Configurator.include() rather than inlined as
calls to methods of a Configurator within the main function in your application’s __init__.py. For
example, rather than:

1 from pyramid.config import Configurator
2

3 if __name__ == ’__main__’:
4 config = Configurator()
5 config.add_view(’myapp.views.view1’, name=’view1’)
6 config.add_view(’myapp.views.view2’, name=’view2’)

You should do move the calls to add_view outside of the (non-reusable) if __name__ ==
’__main__’ block, and into a reusable function:

1 from pyramid.config import Configurator
2

3 if __name__ == ’__main__’:

318

29.3. EXTENDING AN EXISTING APPLICATION

4 config = Configurator()
5 config.include(add_views)
6

7 def add_views(config):
8 config.add_view(’myapp.views.view1’, name=’view1’)
9 config.add_view(’myapp.views.view2’, name=’view2’)

Doing this allows an integrator to maximally reuse the configuration statements that relate to your ap-
plication by allowing him to selectively include or disinclude the configuration functions you’ve created
from an “override package”.

Alternately, you can use ZCML for the purpose of making configuration extensible and overrideable.
ZCML declarations that belong to an application can be overridden and extended by integrators as nec-
essary in a similar fashion. If you use only ZCML to configure your application, it will automatically be
maximally extensible without any manual effort. See pyramid_zcml for information about using ZCML.

29.2.1 Fundamental Plugpoints

The fundamental “plug points” of an application developed using Pyramid are routes, views, and as-
sets. Routes are declarations made using the pyramid.config.Configurator.add_route()
method. Views are declarations made using the pyramid.config.Configurator.add_view()
method. Assets are files that are accessed by Pyramid using the pkg_resources API such as static files and
templates via a asset specification. Other directives and configurator methods also deal in routes, views,
and assets. For example, the add_handler directive of the pyramid_handlers package adds a
single route, and some number of views.

29.3 Extending an Existing Application

The steps for extending an existing application depend largely on whether the application does or does
not use configuration decorators and/or imperative code.

29.3.1 If The Application Has Configuration Decorations

You’ve inherited a Pyramid application which you’d like to extend or override that uses
pyramid.view.view_config decorators or other configuration decoration decorators.

If you just want to extend the application, you can run a scan against the application’s package, then add
additional configuration that registers more views or routes.

319

29. EXTENDING AN EXISTING PYRAMID APPLICATION

1 if __name__ == ’__main__’:
2 config.scan(’someotherpackage’)
3 config.add_view(’mypackage.views.myview’, name=’myview’)

If you want to override configuration in the application, you may need to run
pyramid.config.Configurator.commit() after performing the scan of the original package,
then add additional configuration that registers more views or routes which performs overrides.

1 if __name__ == ’__main__’:
2 config.scan(’someotherpackage’)
3 config.commit()
4 config.add_view(’mypackage.views.myview’, name=’myview’)

Once this is done, you should be able to extend or override the application like any other (see Extending
the Application).

You can alternately just prevent a scan from happening (by omitting any call to the
pyramid.config.Configurator.scan() method). This will cause the decorators attached to
objects in the target application to do nothing. At this point, you will need to convert all the configura-
tion done in decorators into equivalent imperative configuration or ZCML and add that configuration or
ZCML to a separate Python package as described in Extending the Application.

29.3.2 Extending the Application

To extend or override the behavior of an existing application, you will need to create a new package which
includes the configuration of the old package, and you’ll perhaps need to create implementations of the
types of things you’d like to override (such as views), which are referred to within the original package.

The general pattern for extending an existing application looks something like this:

• Create a new Python package. The easiest way to do this is to create a new Pyramid application
using the scaffold mechanism. See Creating the Project for more information.

• In the new package, create Python files containing views and other overridden elements, such as
templates and static assets as necessary.

• Install the new package into the same Python environment as the original application (e.g. python
setup.py develop or python setup.py install).

320

29.3. EXTENDING AN EXISTING APPLICATION

• Change the main function in the new package’s __init__.py to include the original Pyramid
application’s configuration functions via pyramid.config.Configurator.include()
statements or a scan.

• Wire the new views and assets created in the new package up using imperative registrations within
the main function of the __init__.py file of the new application. These wiring should happen
after including the configuration functions of the old application. These registrations will extend or
override any registrations performed by the original application. See Overriding Views, Overriding
Routes and Overriding Assets.

29.3.3 Overriding Views

The view configuration declarations you make which override application behavior will usually have the
same view predicate attributes as the original you wish to override. These <view> declarations will
point at “new” view code, in the override package you’ve created. The new view code itself will usually
be cut-n-paste copies of view callables from the original application with slight tweaks.

For example, if the original application has the following configure_views configuration method:

1 def configure_views(config):
2 config.add_view(’theoriginalapp.views.theview’, name=’theview’)

You can override the first view configuration statement made by configure_viewswithin the override
package, after loading the original configuration function:

1 from pyramid.config import Configurator
2 from originalapp import configure_views
3

4 if __name == ’__main__’:
5 config = Configurator()
6 config.include(configure_views)
7 config.add_view(’theoverrideapp.views.theview’, name=’theview’)

In this case, the theoriginalapp.views.theview view will never be executed. Instead, a new
view, theoverrideapp.views.theview will be executed instead, when request circumstances
dictate.

A similar pattern can be used to extend the application with add_view declarations. Just register a new
view against some other set of predicates to make sure the URLs it implies are available on some other
page rendering.

321

29. EXTENDING AN EXISTING PYRAMID APPLICATION

29.3.4 Overriding Routes

Route setup is currently typically performed in a sequence of ordered calls to add_route(). Be-
cause these calls are ordered relative to each other, and because this ordering is typically important, you
should retain their relative ordering when performing an override. Typically, this means copying all the
add_route statements into the override package’s file and changing them as necessary. Then disinclude
any add_route statements from the original application.

29.3.5 Overriding Assets

Assets are files on the filesystem that are accessible within a Python package. An entire chap-
ter is devoted to assets: Static Assets. Within this chapter is a section named Overriding As-
sets. This section of that chapter describes in detail how to override package assets with other as-
sets by using the pyramid.config.Configurator.override_asset() method. Add such
override_asset calls to your override package’s __init__.py to perform overrides.

322

CHAPTER

THIRTY

STARTUP

When you cause a Pyramid application to start up in a console window, you’ll see something much like
this show up on the console:

$ paster serve myproject/MyProject.ini
Starting server in PID 16601.
serving on 0.0.0.0:6543 view at http://127.0.0.1:6543

This chapter explains what happens between the time you press the “Return” key on your keyboard
after typing paster serve myproject/MyProject.ini and the time the line serving on
0.0.0.0:6543 ... is output to your console.

30.1 The Startup Process

The easiest and best-documented way to start and serve a Pyramid application is to use the paster
serve command against a PasteDeploy .ini file. This uses the .ini file to infer settings and starts
a server listening on a port. For the purposes of this discussion, we’ll assume that you are using this
command to run your Pyramid application.

Here’s a high-level time-ordered overview of what happens when you press return after running
paster serve development.ini.

1. The PasteDeploy paster command is invoked under your shell with the arguments serve and
development.ini. As a result, the PasteDeploy framework recognizes that it is meant to begin
to run and serve an application using the information contained within the development.ini
file.

323

30. STARTUP

2. The PasteDeploy framework finds a section named either [app:main], [pipeline:main],
or [composite:main] in the .ini file. This section represents the configuration of a WSGI
application that will be served. If you’re using a simple application (e.g. [app:main]), the
application entry point or dotted Python name will be named on the use= line within the sec-
tion’s configuration. If, instead of a simple application, you’re using a WSGI pipeline (e.g. a
[pipeline:main] section), the application named on the “last” element will refer to your Pyra-
mid application. If instead of a simple application or a pipeline, you’re using a Paste “composite”
(e.g. [composite:main]), refer to the documentation for that particular composite to under-
stand how to make it refer to your Pyramid application. In most cases, a Pyramid application built
from a scaffold will have a single [app:main] section in it, and this will be the application
served.

3. The PasteDeploy framework finds all logging related configuration in the .ini file and uses it
to configure the Python standard library logging system for this application.

4. The application’s constructor (named by the entry point reference or dotted Python name on the
use= line of the section representing your Pyramid application) is passed the key/value parameters
mentioned within the section in which it’s defined. The constructor is meant to return a router
instance, which is a WSGI application.

For Pyramid applications, the constructor will be a function named main in the __init__.py
file within the package in which your application lives. If this function succeeds, it will return a
Pyramid router instance. Here’s the contents of an example __init__.py module:

1 from pyramid.config import Configurator
2 from myproject.resources import Root
3

4 def main(global_config, **settings):
5 """ This function returns a Pyramid WSGI application.
6 """
7 config = Configurator(root_factory=Root, settings=settings)
8 config.add_view(’myproject.views.my_view’,
9 context=’myproject.resources.Root’,

10 renderer=’myproject:templates/mytemplate.pt’)
11 config.add_static_view(’static’, ’myproject:static’)
12 return config.make_wsgi_app()

Note that the constructor function accepts a global_config argument, which is a dictionary
of key/value pairs mentioned in the [DEFAULT] section of an .ini file. It also accepts a
**settings argument, which collects another set of arbitrary key/value pairs. The arbitrary
key/value pairs received by this function in **settings will be composed of all the key/value
pairs that are present in the [app:main] section (except for the use= setting) when this function
is called by the PasteDeploy framework when you run paster serve.

Our generated development.ini file looks like so:

324

30.1. THE STARTUP PROCESS

1 [app:main]
2 use = egg:MyProject
3

4 pyramid.reload_templates = true
5 pyramid.debug_authorization = false
6 pyramid.debug_notfound = false
7 pyramid.debug_routematch = false
8 pyramid.debug_templates = true
9 pyramid.default_locale_name = en

10 pyramid.includes = pyramid_debugtoolbar
11

12 [server:main]
13 use = egg:Paste#http
14 host = 0.0.0.0
15 port = 6543
16

17 # Begin logging configuration
18

19 [loggers]
20 keys = root, myproject
21

22 [handlers]
23 keys = console
24

25 [formatters]
26 keys = generic
27

28 [logger_root]
29 level = INFO
30 handlers = console
31

32 [logger_myproject]
33 level = DEBUG
34 handlers =
35 qualname = myproject
36

37 [handler_console]
38 class = StreamHandler
39 args = (sys.stderr,)
40 level = NOTSET
41 formatter = generic
42

43 [formatter_generic]
44 format = %(asctime)s %(levelname)-5.5s [%(name)s] %(message)s
45

46 # End logging configuration

325

30. STARTUP

In this case, the myproject.__init__:main function referred to by
the entry point URI egg:MyProject (see development.ini for more infor-
mation about entry point URIs, and how they relate to callables), will re-
ceive the key/value pairs {’pyramid.reload_templates’:’true’,
’pyramid.debug_authorization’:’false’, ’pyramid.debug_notfound’:’false’,
’pyramid.debug_routematch’:’false’, ’pyramid.debug_templates’:’true’,
’pyramid.default_locale_name’:’en’}.

5. The main function first constructs a Configurator instance, passing a root resource factory
(constructor) to it as its root_factory argument, and settings dictionary captured via the
**settings kwarg as its settings argument.

The root resource factory is invoked on every request to retrieve the application’s root resource. It
is not called during startup, only when a request is handled.

The settings dictionary contains all the options in the [app:main] section of our .ini file
except the use option (which is internal to Paste) such as pyramid.reload_templates,
pyramid.debug_authorization, etc.

6. The main function then calls various methods on the instance of the class Configurator created
in the previous step. The intent of calling these methods is to populate an application registry, which
represents the Pyramid configuration related to the application.

7. The make_wsgi_app()method is called. The result is a router instance. The router is associated
with the application registry implied by the configurator previously populated by other methods run
against the Configurator. The router is a WSGI application.

8. A ApplicationCreated event is emitted (see Using Events for more information about
events).

9. Assuming there were no errors, the main function in myproject returns the router instance
created by pyramid.config.Configurator.make_wsgi_app() back to PasteDeploy.
As far as PasteDeploy is concerned, it is “just another WSGI application”.

10. PasteDeploy starts the WSGI server defined within the [server:main] section. In our case,
this is the Paste#http server (use = egg:Paste#http), and it will listen on all interfaces
(host = 0.0.0.0), on port number 6543 (port = 6543). The server code itself is what
prints serving on 0.0.0.0:6543 view at http://127.0.0.1:6543. The server
serves the application, and the application is running, waiting to receive requests.

30.2 Deployment Settings

Note that an augmented version of the values passed as **settings to the Configurator con-
structor will be available in Pyramid view callable code as request.registry.settings. You
can create objects you wish to access later from view code, and put them into the dictionary you pass to
the configurator as settings. They will then be present in the request.registry.settings
dictionary at application runtime.

326

CHAPTER

THIRTYONE

THREAD LOCALS

A thread local variable is a variable that appears to be a “global” variable to an application which uses
it. However, unlike a true global variable, one thread or process serving the application may receive a
different value than another thread or process when that variable is “thread local”.

When a request is processed, Pyramid makes two thread local variables available to the application: a
“registry” and a “request”.

31.1 Why and How Pyramid Uses Thread Local Variables

How are thread locals beneficial to Pyramid and application developers who use Pyramid? Well, usually
they’re decidedly not. Using a global or a thread local variable in any application usually makes it a lot
harder to understand for a casual reader. Use of a thread local or a global is usually just a way to avoid
passing some value around between functions, which is itself usually a very bad idea, at least if code
readability counts as an important concern.

For historical reasons, however, thread local variables are indeed consulted by various Pyramid
API functions. For example, the implementation of the pyramid.security function named
authenticated_userid() retrieves the thread local application registry as a matter of course to
find an authentication policy. It uses the pyramid.threadlocal.get_current_registry()
function to retrieve the application registry, from which it looks up the authentication policy; it then
uses the authentication policy to retrieve the authenticated user id. This is how Pyramid allows arbitrary
authentication policies to be “plugged in”.

When they need to do so, Pyramid internals use two API functions to retrieve the request and application
registry: get_current_request() and get_current_registry(). The former returns the

327

31. THREAD LOCALS

“current” request; the latter returns the “current” registry. Both get_current_* functions retrieve an
object from a thread-local data structure. These API functions are documented in pyramid.threadlocal.

These values are thread locals rather than true globals because one Python process may be handling
multiple simultaneous requests or even multiple Pyramid applications. If they were true globals, Pyramid
could not handle multiple simultaneous requests or allow more than one Pyramid application instance to
exist in a single Python process.

Because one Pyramid application is permitted to call another Pyramid application from its own view code
(perhaps as a WSGI app with help from the pyramid.wsgi.wsgiapp2() decorator), these variables
are managed in a stack during normal system operations. The stack instance itself is a threading.local.

During normal operations, the thread locals stack is managed by a Router object. At the beginning of
a request, the Router pushes the application’s registry and the request on to the stack. At the end of a
request, the stack is popped. The topmost request and registry on the stack are considered “current”.
Therefore, when the system is operating normally, the very definition of “current” is defined entirely by
the behavior of a pyramid Router.

However, during unit testing, no Router code is ever invoked, and the definition of “current” is
defined by the boundary between calls to the pyramid.config.Configurator.begin()
and pyramid.config.Configurator.end() methods (or between calls to the
pyramid.testing.setUp() and pyramid.testing.tearDown() functions). These
functions push and pop the threadlocal stack when the system is under test. See Test Set Up and Tear
Down for the definitions of these functions.

Scripts which use Pyramid machinery but never actually start a WSGI server or receive requests via
HTTP such as scripts which use the pyramid.scripting API will never cause any Router code to
be executed. However, the pyramid.scripting APIs also push some values on to the thread locals
stack as a matter of course. Such scripts should expect the get_current_request() function to
always return None, and should expect the get_current_registry() function to return exactly
the same application registry for every request.

31.2 Why You Shouldn’t Abuse Thread Locals

You probably should almost never use the get_current_request() or
get_current_registry() functions, except perhaps in tests. In particular, it’s almost al-
ways a mistake to use get_current_request or get_current_registry in application
code because its usage makes it possible to write code that can be neither easily tested nor scripted.
Inappropriate usage is defined as follows:

328

http://docs.python.org/library/threading.html#threading.local

31.2. WHY YOU SHOULDN’T ABUSE THREAD LOCALS

• get_current_request should never be called within the body of a view callable, or within
code called by a view callable. View callables already have access to the request (it’s passed in to
each as request).

• get_current_request should never be called in resource code. If a resource needs access to
the request, it should be passed the request by a view callable.

• get_current_request function should never be called because it’s “easier” or “more elegant”
to think about calling it than to pass a request through a series of function calls when creating some
API design. Your application should instead almost certainly pass data derived from the request
around rather than relying on being able to call this function to obtain the request in places that
actually have no business knowing about it. Parameters are meant to be passed around as function
arguments, this is why they exist. Don’t try to “save typing” or create “nicer APIs” by using this
function in the place where a request is required; this will only lead to sadness later.

• Neither get_current_request nor get_current_registry should ever be called
within application-specific forks of third-party library code. The library you’ve forked almost cer-
tainly has nothing to do with Pyramid, and making it dependent on Pyramid (rather than making
your pyramid application depend upon it) means you’re forming a dependency in the wrong di-
rection.

Use of the get_current_request() function in application code is still useful in very limited cir-
cumstances. As a rule of thumb, usage of get_current_request is useful within code which
is meant to eventually be removed. For instance, you may find yourself wanting to deprecate some
API that expects to be passed a request object in favor of one that does not expect to be passed a re-
quest object. But you need to keep implementations of the old API working for some period of time
while you deprecate the older API. So you write a “facade” implementation of the new API which
calls into the code which implements the older API. Since the new API does not require the request,
your facade implementation doesn’t have local access to the request when it needs to pass it into the
older API implementation. After some period of time, the older implementation code is disused and the
hack that uses get_current_request is removed. This would be an appropriate place to use the
get_current_request.

Use of the get_current_registry() function should be limited to testing scenarios. The registry
made current by use of the pyramid.config.Configurator.begin() method during a test (or
via pyramid.testing.setUp()) when you do not pass one in is available to you via this API.

329

31. THREAD LOCALS

330

CHAPTER

THIRTYTWO

USING THE ZOPE COMPONENT
ARCHITECTURE IN PYRAMID

Under the hood, Pyramid uses a Zope Component Architecture component registry as its application
registry. The Zope Component Architecture is referred to colloquially as the “ZCA.”

The zope.component API used to access data in a traditional Zope application can be opaque. For
example, here is a typical “unnamed utility” lookup using the zope.component.getUtility()
global API as it might appear in a traditional Zope application:

1 from pyramid.interfaces import ISettings
2 from zope.component import getUtility
3 settings = getUtility(ISettings)

After this code runs, settings will be a Python dictionary. But it’s unlikely that any “civilian” will be
able to figure this out just by reading the code casually. When the zope.component.getUtility
API is used by a developer, the conceptual load on a casual reader of code is high.

While the ZCA is an excellent tool with which to build a framework such as Pyramid, it is not always
the best tool with which to build an application due to the opacity of the zope.component APIs.
Accordingly, Pyramid tends to hide the presence of the ZCA from application developers. You needn’t
understand the ZCA to create a Pyramid application; its use is effectively only a framework implementa-
tion detail.

However, developers who are already used to writing Zope applications often still wish to use the ZCA
while building a Pyramid application; pyramid makes this possible.

331

32. USING THE ZOPE COMPONENT ARCHITECTURE IN PYRAMID

32.1 Using the ZCA Global API in a Pyramid Application

Zope uses a single ZCA registry – the “global” ZCA registry – for all Zope applications that run in the
same Python process, effectively making it impossible to run more than one Zope application in a single
process.

However, for ease of deployment, it’s often useful to be able to run more than a single application per
process. For example, use of a Paste “composite” allows you to run separate individual WSGI applications
in the same process, each answering requests for some URL prefix. This makes it possible to run, for
example, a TurboGears application at /turbogears and a Pyramid application at /pyramid, both
served up using the same WSGI server within a single Python process.

Most production Zope applications are relatively large, making it impractical due to memory constraints
to run more than one Zope application per Python process. However, a Pyramid application may be very
small and consume very little memory, so it’s a reasonable goal to be able to run more than one Pyramid
application per process.

In order to make it possible to run more than one Pyramid application in a single process, Pyramid defaults
to using a separate ZCA registry per application.

While this services a reasonable goal, it causes some issues when trying to use patterns which you might
use to build a typical Zope application to build a Pyramid application. Without special help, ZCA “global”
APIs such as zope.component.getUtility and zope.component.getSiteManager will
use the ZCA “global” registry. Therefore, these APIs will appear to fail when used in a Pyramid applica-
tion, because they’ll be consulting the ZCA global registry rather than the component registry associated
with your Pyramid application.

There are three ways to fix this: by disusing the ZCA global API entirely, by using
pyramid.config.Configurator.hook_zca() or by passing the ZCA global registry to the
Configurator constructor at startup time. We’ll describe all three methods in this section.

32.1.1 Disusing the Global ZCA API

ZCA “global” API functions such as zope.component.getSiteManager,
zope.component.getUtility, zope.component.getAdapter, and
zope.component.getMultiAdapter aren’t strictly necessary. Every component registry
has a method API that offers the same functionality; it can be used instead. For example, presuming
the registry value below is a Zope Component Architecture component registry, the following bit of
code is equivalent to zope.component.getUtility(IFoo):

332

32.1. USING THE ZCA GLOBAL API IN A PYRAMID APPLICATION

1 registry.getUtility(IFoo)

The full method API is documented in the zope.component package, but it largely mirrors the
“global” API almost exactly.

If you are willing to disuse the “global” ZCA APIs and use the method interface of a registry instead, you
need only know how to obtain the Pyramid component registry.

There are two ways of doing so:

• use the pyramid.threadlocal.get_current_registry() function within Pyramid
view or resource code. This will always return the “current” Pyramid application registry.

• use the attribute of the request object named registry in your Pyramid view code, eg.
request.registry. This is the ZCA component registry related to the running Pyramid appli-
cation.

See Thread Locals for more information about pyramid.threadlocal.get_current_registry().

32.1.2 Enabling the ZCA Global API by Using hook_zca

Consider the following bit of idiomatic Pyramid startup code:

1 from zope.component import getGlobalSiteManager
2 from pyramid.config import Configurator
3

4 def app(global_settings, **settings):
5 config = Configurator(settings=settings)
6 config.include(’some.other.package’)
7 return config.make_wsgi_app()

When the app function above is run, a Configurator is constructed. When the configurator is created, it
creates a new application registry (a ZCA component registry). A new registry is constructed whenever
the registry argument is omitted when a Configurator constructor is called, or when a registry
argument with a value of None is passed to a Configurator constructor.

During a request, the application registry created by the Configurator is “made current”. This means calls
to get_current_registry() in the thread handling the request will return the component registry
associated with the application.

333

32. USING THE ZOPE COMPONENT ARCHITECTURE IN PYRAMID

As a result, application developers can use get_current_registry to get the registry and thus get
access to utilities and such, as per Disusing the Global ZCA API. But they still cannot use the global ZCA
API. Without special treatment, the ZCA global APIs will always return the global ZCA registry (the one
in zope.component.globalregistry.base).

To “fix” this and make the ZCA global APIs use the “current” Pyramid registry, you need to call
hook_zca() within your setup code. For example:

1 from zope.component import getGlobalSiteManager
2 from pyramid.config import Configurator
3

4 def app(global_settings, **settings):
5 config = Configurator(settings=settings)
6 config.hook_zca()
7 config.include(’some.other.application’)
8 return config.make_wsgi_app()

We’ve added a line to our original startup code, line number 6, which calls config.hook_zca(). The
effect of this line under the hood is that an analogue of the following code is executed:

1 from zope.component import getSiteManager
2 from pyramid.threadlocal import get_current_registry
3 getSiteManager.sethook(get_current_registry)

This causes the ZCA global API to start using the Pyramid application registry in threads which are
running a Pyramid request.

Calling hook_zca is usually sufficient to “fix” the problem of being able to use the global ZCA API
within a Pyramid application. However, it also means that a Zope application that is running in the
same process may start using the Pyramid global registry instead of the Zope global registry, effectively
inverting the original problem. In such a case, follow the steps in the next section, Enabling the ZCA
Global API by Using The ZCA Global Registry.

32.1.3 Enabling the ZCA Global API by Using The ZCA Global Registry

You can tell your Pyramid application to use the ZCA global registry at startup time instead of constructing
a new one:

334

32.1. USING THE ZCA GLOBAL API IN A PYRAMID APPLICATION

1 from zope.component import getGlobalSiteManager
2 from pyramid.config import Configurator
3

4 def app(global_settings, **settings):
5 globalreg = getGlobalSiteManager()
6 config = Configurator(registry=globalreg)
7 config.setup_registry(settings=settings)
8 config.include(’some.other.application’)
9 return config.make_wsgi_app()

Lines 5, 6, and 7 above are the interesting ones. Line 5 retrieves the global ZCA component registry.
Line 6 creates a Configurator, passing the global ZCA registry into its constructor as the registry
argument. Line 7 “sets up” the global registry with Pyramid-specific registrations; this is code that is
normally executed when a registry is constructed rather than created, but we must call it “by hand” when
we pass an explicit registry.

At this point, Pyramid will use the ZCA global registry rather than creating a new application-specific
registry; since by default the ZCA global API will use this registry, things will work as you might expect
a Zope app to when you use the global ZCA API.

335

32. USING THE ZOPE COMPONENT ARCHITECTURE IN PYRAMID

336

Part II

Tutorials

CHAPTER

THIRTYTHREE

ZODB + TRAVERSAL WIKI
TUTORIAL

This tutorial introduces a traversal -based Pyramid application to a developer familiar with Python. It
will be most familiar to developers with previous Zope experience. When we’re done with the tutorial,
the developer will have created a basic Wiki application with authentication.

For cut and paste purposes, the source code for all stages of this tutorial can be browsed at
http://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki/src/.

33.1 Background

This version of the Pyramid wiki tutorial presents a Pyramid application that uses technologies which will
be familiar to someone with Zope experience. It uses ZODB as a persistence mechanism and traversal
to map URLs to code. It can also be followed by people without any prior Python web framework
experience.

To code along with this tutorial, the developer will need a UNIX machine with development tools (Mac
OS X with XCode, any Linux or BSD variant, etc) or a Windows system of any kind.

Have fun!

339

http://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki/src/

33. ZODB + TRAVERSAL WIKI TUTORIAL

33.2 Installation

For the most part, the installation process for this tutorial duplicates the steps described in Installing
Pyramid and Creating a Pyramid Project, however it also explains how to install additional libraries for
tutorial purposes.

33.2.1 Preparation

Please take the following steps to prepare for the tutorial. The steps to prepare for the tutorial are slightly
different depending on whether you’re using UNIX or Windows.

Preparation, UNIX

1. If you don’t already have a Python 2.6 interpreter installed on your system, obtain, install, or find
Python 2.6 for your system.

2. Make sure the Python development headers are installed on your system. If you’ve installed Python
from source, these will already be installed. If you’re using a system Python, you may have to
install a python-dev package (e.g. apt-get python-dev). The headers are not required
for Pyramid itself, just for dependencies of the tutorial.

3. Install the latest setuptools into the Python you obtained/installed/found in the step above: down-
load ez_setup.py and run it using the python interpreter of your Python 2.6 installation:

$ /path/to/my/Python-2.6/bin/python ez_setup.py

4. Use that Python’s bin/easy_install to install virtualenv:

$ /path/to/my/Python-2.6/bin/easy_install virtualenv

5. Use that Python’s virtualenv to make a workspace:

$ path/to/my/Python-2.6/bin/virtualenv --no-site-packages \
pyramidtut

6. Switch to the pyramidtut directory:

340

http://python.org/download/releases/2.6.6/
http://peak.telecommunity.com/dist/ez_setup.py

33.2. INSTALLATION

$ cd pyramidtut

7. (Optional) Consider using source bin/activate to make your shell environment wired to
use the virtualenv.

8. Use easy_install to get Pyramid and its direct dependencies installed:

$ bin/easy_install pyramid

9. Use easy_install to install docutils, pyramid_tm, pyramid_zodbconn,
pyramid_debugtoolbar, nose and coverage:

$ bin/easy_install docutils pyramid_tm pyramid_zodbconn \
pyramid_debugtoolbar nose coverage

Preparation, Windows

1. Install, or find Python 2.6 for your system.

2. Install the latest setuptools into the Python you obtained/installed/found in the step above: down-
load ez_setup.py and run it using the python interpreter of your Python 2.6 installation using a
command prompt:

c:\> c:\Python26\python ez_setup.py

3. Use that Python’s bin/easy_install to install virtualenv:

c:\> c:\Python26\Scripts\easy_install virtualenv

4. Use that Python’s virtualenv to make a workspace:

c:\> c:\Python26\Scripts\virtualenv --no-site-packages pyramidtut

5. Switch to the pyramidtut directory:

341

http://python.org/download/releases/2.6.6/
http://peak.telecommunity.com/dist/ez_setup.py

33. ZODB + TRAVERSAL WIKI TUTORIAL

c:\> cd pyramidtut

6. (Optional) Consider using bin\activate.bat to make your shell environment wired to use the
virtualenv.

7. Use easy_install to get Pyramid and its direct dependencies installed:

c:\pyramidtut> Scripts\easy_install pyramid

8. Use easy_install to install docutils, pyramid_tm, pyramid_zodbconn,
pyramid_debugtoolbar, nose and coverage:

c:\pyramidtut> Scripts\easy_install docutils pyramid_tm \
pyramid_zodbconn pyramid_debugtoolbar nose coverage

33.2.2 Making a Project

Your next step is to create a project. Pyramid supplies a variety of scaffolds to generate sample projects.
For this tutorial, we will use the ZODB -oriented scaffold named pyramid_zodb.

The below instructions assume your current working directory is the “virtualenv” named “pyramidtut”.

On UNIX:

$ bin/paster create -t pyramid_zodb tutorial

On Windows:

c:\pyramidtut> Scripts\paster create -t pyramid_zodb tutorial

If you are using Windows, the pyramid_zodb Paster scaffold doesn’t currently deal gracefully
with installation into a location that contains spaces in the path. If you experience startup problems,
try putting both the virtualenv and the project into directories that do not contain spaces in their paths.

342

33.2. INSTALLATION

33.2.3 Installing the Project in “Development Mode”

In order to do development on the project easily, you must “register” the project as a development egg
in your workspace using the setup.py develop command. In order to do so, cd to the “tutorial”
directory you created in Making a Project, and run the “setup.py develop” command using virtualenv
Python interpreter.

On UNIX:

$ cd tutorial
$../bin/python setup.py develop

On Windows:

C:\pyramidtut> cd tutorial
C:\pyramidtut\tutorial> ..\Scripts\python setup.py develop

33.2.4 Running the Tests

After you’ve installed the project in development mode, you may run the tests for the project.

On UNIX:

$../bin/python setup.py test -q

On Windows:

c:\pyramidtut\tutorial> ..\Scripts\python setup.py test -q

33.2.5 Starting the Application

Start the application.

On UNIX:

343

33. ZODB + TRAVERSAL WIKI TUTORIAL

$../bin/paster serve development.ini --reload

On Windows:

c:\pyramidtut\tutorial> ..\Scripts\paster serve development.ini --reload

33.2.6 Exposing Test Coverage Information

You can run the nosetests command to see test coverage information. This runs the tests in the same
way that setup.py test does but provides additional “coverage” information, exposing which lines
of your project are “covered” (or not covered) by the tests.

On UNIX:

$../bin/nosetests --cover-package=tutorial --cover-erase --with-coverage

On Windows:

c:\pyramidtut\tutorial> ..\Scripts\nosetests --cover-package=tutorial ^
--cover-erase --with-coverage

Looks like the code in the pyramid_zodb scaffold for ZODB projects is missing some test coverage,
particularly in the file named models.py.

33.2.7 Visit the Application in a Browser

In a browser, visit http://localhost:6543/. You will see the generated application’s default page.

One thing you’ll notice is the “debug toolbar” icon on right hand side of the page. You can read more about
the purpose of the icon at The Debug Toolbar. It allows you to get information about your application
while you develop.

344

http://localhost:6543

33.3. BASIC LAYOUT

33.2.8 Decisions the pyramid_zodb Scaffold Has Made For You

Creating a project using the pyramid_zodb scaffold makes the following assumptions:

• you are willing to use ZODB as persistent storage

• you are willing to use traversal to map URLs to code.

Pyramid supports any persistent storage mechanism (e.g. a SQL database or filesystem files, etc).
Pyramid also supports an additional mechanism to map URLs to code (URL dispatch). However, for
the purposes of this tutorial, we’ll only be using traversal and ZODB.

33.3 Basic Layout

The starter files generated by the pyramid_zodb scaffold are basic, but they provide a good orientation
for the high-level patterns common to most traversal -based Pyramid (and ZODB based) projects.

The source code for this tutorial stage can be browsed via
http://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki/src/basiclayout/.

33.3.1 App Startup with __init__.py

A directory on disk can be turned into a Python package by containing an __init__.py file. Even
if empty, this marks a directory as a Python package. Our application uses __init__.py as both a
package marker, as well as to contain application configuration code.

When you run the application using the paster command using the development.ini generated
config file, the application configuration points at a Setuptools entry point described as egg:tutorial.
In our application, because the application’s setup.py file says so, this entry point happens to be the
main function within the file named __init__.py:

345

http://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki/src/basiclayout/

33. ZODB + TRAVERSAL WIKI TUTORIAL

1 from pyramid.config import Configurator
2 from pyramid_zodbconn import get_connection
3 from tutorial.models import appmaker
4

5 def root_factory(request):
6 conn = get_connection(request)
7 return appmaker(conn.root())
8

9 def main(global_config, **settings):
10 """ This function returns a Pyramid WSGI application.
11 """
12 config = Configurator(root_factory=root_factory, settings=settings)
13 config.add_static_view(’static’, ’tutorial:static’, cache_max_age=3600)
14 config.scan(’tutorial’)
15 return config.make_wsgi_app()

1. Lines 1-3. Perform some dependency imports.

2. Lines 5-7 Define a root factory for our Pyramid application.

3. Line 12. We construct a Configurator with a root factory and the settings keywords parsed by
PasteDeploy. The root factory is named get_root.

4. Line 13. Register a ‘static view’ which answers requests which start with with URL path /static
using the pyramid.config.Configurator.add_static_view method(). This
statement registers a view that will serve up static assets, such as CSS and image files, for us,
in this case, at http://localhost:6543/static/ and below. The first argument is the
“name” static, which indicates that the URL path prefix of the view will be /static. the The
second argument of this tag is the “path”, which is an asset specification, so it finds the resources it
should serve within the static directory inside the tutorial package.

5. Line 14. Perform a scan. A scan will find configuration decoration, such as view configuration
decorators (e.g. @view_config) in the source code of the tutorial package and will take
actions based on these decorators. The argument to scan() is the package name to scan, which is
tutorial.

6. Line 15. Use the pyramid.config.Configurator.make_wsgi_app() method to return
a WSGI application.

346

33.3. BASIC LAYOUT

33.3.2 Resources and Models with models.py

Pyramid uses the word resource to describe objects arranged hierarchically in a resource tree. This tree
is consulted by traversal to map URLs to code. In this application, the resource tree represents the site
structure, but it also represents the domain model of the application, because each resource is a node
stored persistently in a ZODB database. The models.py file is where the pyramid_zodb scaffold
put the classes that implement our resource objects, each of which happens also to be a domain model
object.

Here is the source for models.py:

1 from persistent.mapping import PersistentMapping
2

3 class MyModel(PersistentMapping):
4 __parent__ = __name__ = None
5

6 def appmaker(zodb_root):
7 if not ’app_root’ in zodb_root:
8 app_root = MyModel()
9 zodb_root[’app_root’] = app_root

10 import transaction
11 transaction.commit()
12 return zodb_root[’app_root’]

1. Lines 3-4. The MyModel resource class is implemented here. Instances of this
class will be capable of being persisted in ZODB because the class inherits from the
persistent.mapping.PersistentMapping class. The __parent__ and __name__
are important parts of the traversal protocol. By default, have these as None indicating that this is
the root object.

2. Lines 6-12. appmaker is used to return the application root object. It is called on every request to
the Pyramid application. It also performs bootstrapping by creating an application root (inside the
ZODB root object) if one does not already exist. It is used by the “root_factory” we’ve defined in
our __init__.py.

We do so by first seeing if the database has the persistent application root. If not, we make an
instance, store it, and commit the transaction. We then return the application root object.

33.3.3 Views With views.py

Our scaffold generated a default views.py on our behalf. It contains a single view, which is used to
render the page shown when you visit the URL http://localhost:6543/.

Here is the source for views.py:

347

33. ZODB + TRAVERSAL WIKI TUTORIAL

1 from pyramid.view import view_config
2 from tutorial.models import MyModel
3

4 @view_config(context=MyModel,
5 renderer=’tutorial:templates/mytemplate.pt’)
6 def my_view(request):
7 return {’project’:’tutorial’}

Let’s try to understand the components in this module:

1. Lines 1-2. Perform some dependency imports.

2. Line 4. Use the pyramid.view.view_config() configuration decoration to perform a view
configuration registration. This view configuration registration will be activated when the applica-
tion is started. It will be activated by virtue of it being found as the result of a scan (when Line 17
of __init__.py is run).

The @view_config decorator accepts a number of keyword arguments. We use two keyword
arguments here: context and renderer.

The context argument signifies that the decorated view callable should only be run when traver-
sal finds the tutorial.models.MyModel resource to be the context of a request. In English,
this means that when the URL / is visited, because MyModel is the root model, this view callable
will be invoked.

The renderer argument names an asset specification of
tutorial:templates/mytemplate.pt. This asset specification points at a Chameleon
template which lives in the mytemplate.pt file within the templates directory of the
tutorial package. And indeed if you look in the templates directory of this package, you’ll
see a mytemplate.pt template file, which renders the default home page of the generated
project.

Since this call to @view_config doesn’t pass a name argument, the my_view function which
it decorates represents the “default” view callable used when the context is of the type MyModel.

3. Lines 5-6. We define a view callable named my_view, which we decorated in the step above.
This view callable is a function we write generated by the pyramid_zodb scaffold that is given
a request and which returns a dictionary. The mytemplate.pt renderer named by the asset
specification in the step above will convert this dictionary to a response on our behalf.

The function returns the dictionary {’project’:’tutorial’}. This dictionary is used by the
template named by the mytemplate.pt asset specification to fill in certain values on the page.

348

33.3. BASIC LAYOUT

33.3.4 Configuration in development.ini

The development.ini (in the tutorial project directory, as opposed to the tutorial package directory)
looks like this:

[app:main]
use = egg:tutorial
pyramid.reload_templates = true
pyramid.debug_authorization = false
pyramid.debug_notfound = false
pyramid.debug_routematch = false
pyramid.debug_templates = true
pyramid.default_locale_name = en
pyramid.includes = pyramid_debugtoolbar

pyramid_zodbconn
pyramid_tm

tm.attempts = 3
zodbconn.uri = file://%(here)s/Data.fs?connection_cache_size=20000

[server:main]
use = egg:Paste#http
host = 0.0.0.0
port = 6543

Begin logging configuration

[loggers]
keys = root

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]

349

33. ZODB + TRAVERSAL WIKI TUTORIAL

format = %(asctime)s %(levelname)-5.5s [%(name)s] %(message)s

End logging configuration

Note the existence of an [app:main] section which specifies our WSGI application. Our ZODB
database settings are specified as the zodbconn.uri setting within this section. This value, and
the other values within this section are passed as **settings to the main function we defined in
__init__.py when the server is started via paster serve.

33.4 Defining the Domain Model

The first change we’ll make to our stock paster-generated application will be to define two resource
constructors, one representing a wiki page, and another representing the wiki as a mapping of wiki page
names to page objects. We’ll do this inside our models.py file.

Because we’re using ZODB to represent our resource tree, each of these resource constructors represents
a domain model object, so we’ll call these constructors “model constructors”. Both our Page and Wiki
constructors will be class objects. A single instance of the “Wiki” class will serve as a container for
“Page” objects, which will be instances of the “Page” class.

The source code for this tutorial stage can be browsed via
http://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki/src/models/.

33.4.1 Deleting the Database

In the next step, we’re going to remove the MyModel Python model class from our models.py file.
Since this class is referred to within our persistent storage (represented on disk as a file named Data.fs),
we’ll have strange things happen the next time we want to visit the application in a browser. Remove the
Data.fs from the tutorial directory before proceeding any further. It’s always fine to do this as
long as you don’t care about the content of the database; the database itself will be recreated as necessary.

350

http://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki/src/models/

33.4. DEFINING THE DOMAIN MODEL

33.4.2 Making Edits to models.py

There is nothing automagically special about the filename models.py. A project may have
many models throughout its codebase in arbitrarily-named files. Files implementing models often
have model in their filenames, or they may live in a Python subpackage of your application package
named models, but this is only by convention.

The first thing we want to do is remove the MyModel class from the generated models.py file. The
MyModel class is only a sample and we’re not going to use it.

Then, we’ll add a Wiki class. We want it to inherit from the
persistent.mapping.PersistentMapping class because it provides mapping behavior,
and it makes sure that our Wiki page is stored as a “first-class” persistent object in our ZODB database.

Our Wiki class should have two attributes set to None at class scope: __parent__ and __name__.
If a model has a __parent__ attribute of None in a traversal-based Pyramid application, it means that
it’s the root model. The __name__ of the root model is also always None.

Then we’ll add a Page class. This class should inherit from the persistent.Persistent class.
We’ll also give it an __init__method that accepts a single parameter named data. This parameter will
contain the ReStructuredText body representing the wiki page content. Note that Page objects don’t have
an initial __name__ or __parent__ attribute. All objects in a traversal graph must have a __name__
and a __parent__ attribute. We don’t specify these here because both __name__ and __parent__
will be set by by a view function when a Page is added to our Wiki mapping.

As a last step, we want to change the appmaker function in our models.py file so that the root
resource of our application is a Wiki instance. We’ll also slot a single page object (the front page) into the
Wiki within the appmaker. This will provide traversal a resource tree to work against when it attempts
to resolve URLs to resources.

33.4.3 Looking at the Result of Our Edits to models.py

The result of all of our edits to models.py will end up looking something like this:

1 from persistent import Persistent
2 from persistent.mapping import PersistentMapping
3

4 class Wiki(PersistentMapping):
5 __name__ = None

351

33. ZODB + TRAVERSAL WIKI TUTORIAL

6 __parent__ = None
7

8 class Page(Persistent):
9 def __init__(self, data):

10 self.data = data
11

12 def appmaker(zodb_root):
13 if not ’app_root’ in zodb_root:
14 app_root = Wiki()
15 frontpage = Page(’This is the front page’)
16 app_root[’FrontPage’] = frontpage
17 frontpage.__name__ = ’FrontPage’
18 frontpage.__parent__ = app_root
19 zodb_root[’app_root’] = app_root
20 import transaction
21 transaction.commit()
22 return zodb_root[’app_root’]

33.4.4 Viewing the Application in a Browser

We can’t. At this point, our system is in a “non-runnable” state; we’ll need to change view-related files in
the next chapter to be able to start the application successfully. If you try to start the application, you’ll
wind up with a Python traceback on your console that ends with this exception:

ImportError: cannot import name MyModel

This will also happen if you attempt to run the tests.

33.5 Defining Views

A view callable in a traversal -based Pyramid application is typically a simple Python function that
accepts two parameters: context and request. A view callable is assumed to return a response object.

352

33.5. DEFINING VIEWS

A Pyramid view can also be defined as callable which accepts only a request argument. You’ll
see this one-argument pattern used in other Pyramid tutorials and applications. Either calling con-
vention will work in any Pyramid application; the calling conventions can be used interchangeably
as necessary. In traversal based applications, URLs are mapped to a context resource, and since our
resource tree also represents our application’s “domain model”, we’re often interested in the con-
text, because it represents the persistent storage of our application. For this reason, in this tutorial
we define views as callables that accept context in the callable argument list. If you do need the
context within a view function that only takes the request as a single argument, you can obtain it
via request.context.

We’re going to define several view callable functions, then wire them into Pyramid using some view
configuration.

The source code for this tutorial stage can be browsed via
http://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki/src/views/.

33.5.1 Declaring Dependencies in Our setup.py File

The view code in our application will depend on a package which is not a dependency of the original
“tutorial” application. The original “tutorial” application was generated by the paster create com-
mand; it doesn’t know about our custom application requirements. We need to add a dependency on the
docutils package to our tutorial package’s setup.py file by assigning this dependency to the
install_requires parameter in the setup function.

Our resulting setup.py should look like so:

1 import os
2

3 from setuptools import setup, find_packages
4

5 here = os.path.abspath(os.path.dirname(__file__))
6 README = open(os.path.join(here, ’README.txt’)).read()
7 CHANGES = open(os.path.join(here, ’CHANGES.txt’)).read()
8

9 requires = [
10 ’pyramid’,
11 ’pyramid_zodbconn’,
12 ’pyramid_tm’,
13 ’pyramid_debugtoolbar’,
14 ’ZODB3’,
15 ’docutils’,

353

http://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki/src/views/

33. ZODB + TRAVERSAL WIKI TUTORIAL

16]
17

18 setup(name=’tutorial’,
19 version=’0.0’,
20 description=’tutorial’,
21 long_description=README + ’\n\n’ + CHANGES,
22 classifiers=[
23 "Intended Audience :: Developers",
24 "Framework :: Pylons",
25 "Programming Language :: Python",
26 "Topic :: Internet :: WWW/HTTP",
27 "Topic :: Internet :: WWW/HTTP :: WSGI :: Application",
28],
29 author=’’,
30 author_email=’’,
31 url=’’,
32 keywords=’web pylons pyramid’,
33 packages=find_packages(),
34 include_package_data=True,
35 zip_safe=False,
36 install_requires=requires,
37 tests_require=requires,
38 test_suite="tutorial",
39 entry_points = """\
40 [paste.app_factory]
41 main = tutorial:main
42 """,
43 paster_plugins=[’pyramid’],
44)

After these new dependencies are added, you will need to rerun python setup.py
develop inside the root of the tutorial package to obtain and register the newly added depen-
dency package.

33.5.2 Adding View Functions

We’re going to add four view callable functions to our views.py module. One view named
view_wiki will display the wiki itself (it will answer on the root URL), another named view_page
will display an individual page, another named add_page will allow a page to be added, and a final
view named edit_page will allow a page to be edited.

354

33.5. DEFINING VIEWS

There is nothing special about the filename views.py. A project may have many view callables
throughout its codebase in arbitrarily-named files. Files implementing view callables often have view
in their filenames (or may live in a Python subpackage of your application package named views),
but this is only by convention.

The view_wiki view function

The view_wiki function will be configured to respond as the default view callable for a Wiki resource.
We’ll provide it with a @view_config decorator which names the class tutorial.models.Wiki
as its context. This means that when a Wiki resource is the context, and no view name exists in the
request, this view will be used. The view configuration associated with view_wiki does not use a
renderer because the view callable always returns a response object rather than a dictionary. No
renderer is necessary when a view returns a response object.

The view_wiki view callable always redirects to the URL of a Page re-
source named “FrontPage”. To do so, it returns an instance of the
pyramid.httpexceptions.HTTPFound class (instances of which implement the
pyramid.interfaces.IResponse interface like pyramid.response.Response
does). The pyramid.request.Request.resource_url() API.
pyramid.request.Request.resource_url() constructs a URL to the FrontPage
page resource (e.g. http://localhost:6543/FrontPage), and uses it as the “location” of the
HTTPFound response, forming an HTTP redirect.

The view_page view function

The view_page function will be configured to respond as the default view of a Page resource. We’ll
provide it with a @view_config decorator which names the class tutorial.models.Page as its
context. This means that when a Page resource is the context, and no view name exists in the request, this
view will be used. We inform Pyramid this view will use the templates/view.pt template file as a
renderer.

The view_page function generates the ReStructuredText body of a page (stored as the data attribute
of the context passed to the view; the context will be a Page resource) as HTML. Then it substitutes an
HTML anchor for each WikiWord reference in the rendered HTML using a compiled regular expression.

The curried function named check is used as the first argument to wikiwords.sub, indicating that it
should be called to provide a value for each WikiWord match found in the content. If the wiki (our page’s
__parent__) already contains a page with the matched WikiWord name, the check function generates

355

33. ZODB + TRAVERSAL WIKI TUTORIAL

a view link to be used as the substitution value and returns it. If the wiki does not already contain a page
with with the matched WikiWord name, the function generates an “add” link as the substitution value and
returns it.

As a result, the content variable is now a fully formed bit of HTML containing various view and add
links for WikiWords based on the content of our current page resource.

We then generate an edit URL (because it’s easier to do here than in the template), and we wrap up a
number of arguments in a dictionary and return it.

The arguments we wrap into a dictionary include page, content, and edit_url. As a result, the
template associated with this view callable (via renderer= in its configuration) will be able to use
these names to perform various rendering tasks. The template associated with this view callable will be a
template which lives in templates/view.pt.

Note the contrast between this view callable and the view_wiki view callable. In the view_wiki
view callable, we unconditionally return a response object. In the view_page view callable, we return
a dictionary. It is always fine to return a response object from a Pyramid view. Returning a dictionary is
allowed only when there is a renderer associated with the view callable in the view configuration.

The add_page view function

The add_page function will be configured to respond when the context resource is a Wiki and the
view name is add_page. We’ll provide it with a @view_config decorator which names the string
add_page as its view name (via name=), the class tutorial.models.Wiki as its context, and the
renderer named templates/edit.pt. This means that when a Wiki resource is the context, and a
view name named add_page exists as the result of traversal, this view will be used. We inform Pyramid
this view will use the templates/edit.pt template file as a renderer. We share the same template
between add and edit views, thus edit.pt instead of add.pt.

The add_page function will be invoked when a user clicks on a WikiWord which isn’t yet represented as
a page in the system. The check function within the view_page view generates URLs to this view. It
also acts as a handler for the form that is generated when we want to add a page resource. The context
of the add_page view is always a Wiki resource (not a Page resource).

The request subpath in Pyramid is the sequence of names that are found after the view name in the URL
segments given in the PATH_INFO of the WSGI request as the result of traversal. If our add view is
invoked via, e.g. http://localhost:6543/add_page/SomeName, the subpath will be a tuple:
(’SomeName’,).

The add view takes the zeroth element of the subpath (the wiki page name), and aliases it to the name
attribute in order to know the name of the page we’re trying to add.

356

33.5. DEFINING VIEWS

If the view rendering is not a result of a form submission (if the expression ’form.submitted’ in
request.params is False), the view renders a template. To do so, it generates a “save url” which
the template use as the form post URL during rendering. We’re lazy here, so we’re trying to use the same
template (templates/edit.pt) for the add view as well as the page edit view. To do so, we create a
dummy Page resource object in order to satisfy the edit form’s desire to have some page object exposed
as page, and we’ll render the template to a response.

If the view rendering is a result of a form submission (if the expression ’form.submitted’ in
request.params is True), we scrape the page body from the form data, create a Page object using the
name in the subpath and the page body, and save it into “our context” (the Wiki) using the __setitem__
method of the context. We then redirect back to the view_page view (the default view for a page) for
the newly created page.

The edit_page view function

The edit_page function will be configured to respond when the context is a Page resource and the
view name is edit_page. We’ll provide it with a @view_config decorator which names the string
edit_page as its view name (via name=), the class tutorial.models.Page as its context, and
the renderer named templates/edit.pt. This means that when a Page resource is the context, and
a view name exists as the result of traversal named edit_page, this view will be used. We inform
Pyramid this view will use the templates/edit.pt template file as a renderer.

The edit_page function will be invoked when a user clicks the “Edit this Page” button on the view
form. It renders an edit form but it also acts as the form post view callable for the form it renders. The
context of the edit_page view will always be a Page resource (never a Wiki resource).

If the view execution is not a result of a form submission (if the expression ’form.submitted’ in
request.params is False), the view simply renders the edit form, passing the page resource, and a
save_url which will be used as the action of the generated form.

If the view execution is a result of a form submission (if the expression ’form.submitted’ in
request.params is True), the view grabs the body element of the request parameter and sets it as
the data attribute of the page context. It then redirects to the default view of the context (the page),
which will always be the view_page view.

33.5.3 Viewing the Result of all Our Edits to views.py

The result of all of our edits to views.py will leave it looking like this:

357

33. ZODB + TRAVERSAL WIKI TUTORIAL

1 from docutils.core import publish_parts
2 import re
3

4 from pyramid.httpexceptions import HTTPFound
5 from pyramid.view import view_config
6

7 from tutorial.models import Page
8

9 # regular expression used to find WikiWords
10 wikiwords = re.compile(r"\b([A-Z]\w+[A-Z]+\w+)")
11

12 @view_config(context=’tutorial.models.Wiki’)
13 def view_wiki(context, request):
14 return HTTPFound(location=request.resource_url(context, ’FrontPage’))
15

16 @view_config(context=’tutorial.models.Page’,
17 renderer=’tutorial:templates/view.pt’)
18 def view_page(context, request):
19 wiki = context.__parent__
20

21 def check(match):
22 word = match.group(1)
23 if word in wiki:
24 page = wiki[word]
25 view_url = request.resource_url(page)
26 return ’%s’ % (view_url, word)
27 else:
28 add_url = request.application_url + ’/add_page/’ + word
29 return ’%s’ % (add_url, word)
30

31 content = publish_parts(context.data, writer_name=’html’)[’html_body’]
32 content = wikiwords.sub(check, content)
33 edit_url = request.resource_url(context, ’edit_page’)
34 return dict(page = context, content = content, edit_url = edit_url)
35

36 @view_config(name=’add_page’, context=’tutorial.models.Wiki’,
37 renderer=’tutorial:templates/edit.pt’)
38 def add_page(context, request):
39 name = request.subpath[0]
40 if ’form.submitted’ in request.params:
41 body = request.params[’body’]
42 page = Page(body)
43 page.__name__ = name
44 page.__parent__ = context
45 context[name] = page
46 return HTTPFound(location = request.resource_url(page))

358

33.5. DEFINING VIEWS

47 save_url = request.resource_url(context, ’add_page’, name)
48 page = Page(’’)
49 page.__name__ = name
50 page.__parent__ = context
51 return dict(page = page, save_url = save_url)
52

53 @view_config(name=’edit_page’, context=’tutorial.models.Page’,
54 renderer=’tutorial:templates/edit.pt’)
55 def edit_page(context, request):
56 if ’form.submitted’ in request.params:
57 context.data = request.params[’body’]
58 return HTTPFound(location = request.resource_url(context))
59

60 return dict(page = context,
61 save_url = request.resource_url(context, ’edit_page’))

33.5.4 Adding Templates

Most view callables we’ve added expected to be rendered via a template. The default templating systems
in Pyramid are Chameleon and Mako. Chameleon is a variant of ZPT , which is an XML-based templating
language. Mako is a non-XML-based templating language. Because we had to pick one, we chose
Chameleon for this tutorial.

The templates we create will live in the templates directory of our tutorial package. Chameleon
templates must have a .pt extension to be recognized as such.

The view.pt Template

The view.pt template is used for viewing a single Page. It is used by the view_page view function. It
should have a div that is “structure replaced” with the content value provided by the view. It should also
have a link on the rendered page that points at the “edit” URL (the URL which invokes the edit_page
view for the page being viewed).

Once we’re done with the view.pt template, it will look a lot like the below:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
xmlns:tal="http://xml.zope.org/namespaces/tal">

<head>

359

33. ZODB + TRAVERSAL WIKI TUTORIAL

<title>${page.__name__} - Pyramid tutorial wiki (based on
TurboGears 20-Minute Wiki)</title>

<meta http-equiv="Content-Type" content="text/html;charset=UTF-8"/>
<meta name="keywords" content="python web application" />
<meta name="description" content="pyramid web application" />
<link rel="shortcut icon"

href="${request.static_url(’tutorial:static/favicon.ico’)}" />
<link rel="stylesheet"

href="${request.static_url(’tutorial:static/pylons.css’)}"
type="text/css" media="screen" charset="utf-8" />

<!--[if lte IE 6]>
<link rel="stylesheet"

href="${request.static_url(’tutorial:static/ie6.css’)}"
type="text/css" media="screen" charset="utf-8" />

<![endif]-->
</head>
<body>
<div id="wrap">

<div id="top-small">
<div class="top-small align-center">
<div>

<img width="220" height="50" alt="pyramid"
src="${request.static_url(’tutorial:static/pyramid-small.png’)}" />
</div>

</div>
</div>
<div id="middle">

<div class="middle align-right">
<div id="left" class="app-welcome align-left">

Viewing Page Name Goes
Here

You can return to the
FrontPage.

</div>
<div id="right" class="app-welcome align-right"></div>

</div>
</div>
<div id="bottom">

<div class="bottom">
<div tal:replace="structure content">

Page text goes here.
</div>
<p>

<a tal:attributes="href edit_url" href="">
Edit this page

360

33.5. DEFINING VIEWS

</p>
</div>

</div>
</div>
<div id="footer">

<div class="footer"
>© Copyright 2008-2011, Agendaless Consulting.</div>

</div>
</body>
</html>

The names available for our use in a template are always those that are present in the dictionary
returned by the view callable. But our templates make use of a request object that none of our
tutorial views return in their dictionary. This value appears as if “by magic”. However, request is
one of several names that are available “by default” in a template when a template renderer is used.
See *.pt or *.txt: Chameleon Template Renderers for more information about other names that are
available by default in a template when a template is used as a renderer.

The edit.pt Template

The edit.pt template is used for adding and editing a Page. It is used by the add_page and
edit_page view functions. It should display a page containing a form that POSTs back to the
“save_url” argument supplied by the view. The form should have a “body” textarea field (the page data),
and a submit button that has the name “form.submitted”. The textarea in the form should be filled with
any existing page data when it is rendered.

Once we’re done with the edit.pt template, it will look a lot like the below:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
xmlns:tal="http://xml.zope.org/namespaces/tal">

<head>
<title>${page.__name__} - Pyramid tutorial wiki (based on

TurboGears 20-Minute Wiki)</title>
<meta http-equiv="Content-Type" content="text/html;charset=UTF-8"/>
<meta name="keywords" content="python web application" />
<meta name="description" content="pyramid web application" />
<link rel="shortcut icon"

href="${request.static_url(’tutorial:static/favicon.ico’)}" />

361

33. ZODB + TRAVERSAL WIKI TUTORIAL

<link rel="stylesheet"
href="${request.static_url(’tutorial:static/pylons.css’)}"
type="text/css" media="screen" charset="utf-8" />

<!--[if lte IE 6]>
<link rel="stylesheet"

href="${request.static_url(’tutorial:static/ie6.css’)}"
type="text/css" media="screen" charset="utf-8" />

<![endif]-->
</head>
<body>
<div id="wrap">

<div id="top-small">
<div class="top-small align-center">
<div>

<img width="220" height="50" alt="pyramid"
src="${request.static_url(’tutorial:static/pyramid-small.png’)}" />
</div>

</div>
</div>
<div id="middle">

<div class="middle align-right">
<div id="left" class="app-welcome align-left">

Editing Page Name Goes
Here

You can return to the
FrontPage.

</div>
<div id="right" class="app-welcome align-right"></div>

</div>
</div>
<div id="bottom">

<div class="bottom">
<form action="${save_url}" method="post">

<textarea name="body" tal:content="page.data" rows="10"
cols="60"/>

<input type="submit" name="form.submitted" value="Save"/>
</form>

</div>
</div>

</div>
<div id="footer">

<div class="footer"
>© Copyright 2008-2011, Agendaless Consulting.</div>

</div>
</body>
</html>

362

33.5. DEFINING VIEWS

Static Assets

Our templates name a single static asset named pylons.css. We don’t need to create this file within
our package’s static directory because it was provided at the time we created the project. This file is a
little too long to replicate within the body of this guide, however it is available online.

This CSS file will be accessed via e.g. http://localhost:6543/static/pylons.css
by virtue of the call to add_static_view directive we’ve made in the __init__.py
file. Any number and type of static assets can be placed in this directory (or subdirecto-
ries) and are just referred to by URL or by using the convenience method static_url e.g.
request.static_url(’{{package}}:static/foo.css’) within templates.

33.5.5 Viewing the Application in a Browser

We can finally examine our application in a browser. The views we’ll try are as follows:

• Visiting http://localhost:6543/ in a browser invokes the view_wiki view. This always
redirects to the view_page view of the FrontPage Page resource.

• Visiting http://localhost:6543/FrontPage/ in a browser invokes the view_page
view of the front page resource. This is because it’s the default view (a view without a name)
for Page resources.

• Visiting http://localhost:6543/FrontPage/edit_page in a browser invokes the edit
view for the FrontPage Page resource.

• Visiting http://localhost:6543/add_page/SomePageName in a browser invokes the
add view for a Page.

• To generate an error, visit http://localhost:6543/add_page which will generate an
IndexError for the expression request.subpath[0]. You’ll see an interactive traceback
facility provided by pyramid_debugtoolbar.

363

http://github.com/Pylons/pyramid/blob/master/docs/tutorials/wiki/src/views/tutorial/static/pylons.css

33. ZODB + TRAVERSAL WIKI TUTORIAL

33.6 Adding Authorization

Our application currently allows anyone with access to the server to view, edit, and add pages to our
wiki. For purposes of demonstration we’ll change our application to allow people whom are members of
a group named group:editors to add and edit wiki pages but we’ll continue allowing anyone with
access to the server to view pages. Pyramid provides facilities for authorization and authentication. We’ll
make use of both features to provide security to our application.

We will add an authentication policy and an authorization policy to our application registry, add a
security.py module and give our root resource an ACL.

Then we will add login and logout views, and modify the existing views to make them return a
logged_in flag to the renderer and add permission declarations to their view_config decorators.

Finally, we will add a login.pt template and change the existing view.pt and edit.pt to show a
“Logout” link when not logged in.

The source code for this tutorial stage can be browsed via
http://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki/src/authorization/.

33.6.1 Adding Authentication and Authorization Policies

We’ll change our package’s __init__.py file to enable an AuthTktAuthenticationPolicy
and an ACLAuthorizationPolicy to enable declarative security checking. We need to import the
new policies:

1 from pyramid.authentication import AuthTktAuthenticationPolicy
2 from pyramid.authorization import ACLAuthorizationPolicy
3 from tutorial.security import groupfinder

Then, we’ll add those policies to the configuration:

1 authn_policy = AuthTktAuthenticationPolicy(secret=’sosecret’,
2 callback=groupfinder)
3 authz_policy = ACLAuthorizationPolicy()
4 config = Configurator(root_factory=root_factory, settings=settings,
5 authentication_policy=authn_policy,
6 authorization_policy=authz_policy)

364

http://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki/src/authorization/

33.6. ADDING AUTHORIZATION

Note that the creation of an AuthTktAuthenticationPolicy requires two arguments: secret
and callback. secret is a string representing an encryption key used by the “authentication ticket”
machinery represented by this policy: it is required. The callback is a reference to a groupfinder
function in the tutorial package’s security.py file. We haven’t added that module yet, but we’re
about to.

When you’re done, your __init__.py will look like so:

1 from pyramid.config import Configurator
2 from pyramid_zodbconn import get_connection
3

4 from pyramid.authentication import AuthTktAuthenticationPolicy
5 from pyramid.authorization import ACLAuthorizationPolicy
6

7 from tutorial.models import appmaker
8 from tutorial.security import groupfinder
9

10 def root_factory(request):
11 conn = get_connection(request)
12 return appmaker(conn.root())
13

14 def main(global_config, **settings):
15 """ This function returns a WSGI application.
16

17 It is usually called by the PasteDeploy framework during
18 ‘‘paster serve‘‘.
19 """
20 authn_policy = AuthTktAuthenticationPolicy(secret=’sosecret’,
21 callback=groupfinder)
22 authz_policy = ACLAuthorizationPolicy()
23 config = Configurator(root_factory=root_factory, settings=settings,
24 authentication_policy=authn_policy,
25 authorization_policy=authz_policy)
26 config.add_static_view(’static’, ’tutorial:static’, cache_max_age=3600)
27 config.scan(’tutorial’)
28 return config.make_wsgi_app()

33.6.2 Adding security.py

Add a security.py module within your package (in the same directory as __init__.py,
views.py, etc.) with the following content:

365

33. ZODB + TRAVERSAL WIKI TUTORIAL

1 USERS = {’editor’:’editor’,
2 ’viewer’:’viewer’}
3 GROUPS = {’editor’:[’group:editors’]}
4

5 def groupfinder(userid, request):
6 if userid in USERS:
7 return GROUPS.get(userid, [])

The groupfinder function defined here is an authentication policy “callback”; it is a callable that
accepts a userid and a request. If the userid exists in the system, the callback will return a sequence of
group identifiers (or an empty sequence if the user isn’t a member of any groups). If the userid does
not exist in the system, the callback will return None. In a production system, user and group data will
most often come from a database, but here we use “dummy” data to represent user and groups sources.
Note that the editor user is a member of the group:editors group in our dummy group data (the
GROUPS data structure).

33.6.3 Giving Our Root Resource an ACL

We need to give our root resource object an ACL. This ACL will be sufficient to provide enough infor-
mation to the Pyramid security machinery to challenge a user who doesn’t have appropriate credentials
when he attempts to invoke the add_page or edit_page views.

We need to perform some imports at module scope in our models.py file:

1 from pyramid.security import Allow
2 from pyramid.security import Everyone

Our root resource object is a Wiki instance. We’ll add the following line at class scope to our Wiki
class:

1 __acl__ = [(Allow, Everyone, ’view’),
2 (Allow, ’group:editors’, ’edit’)]

It’s only happenstance that we’re assigning this ACL at class scope. An ACL can be attached to an object
instance too; this is how “row level security” can be achieved in Pyramid applications. We actually only
need one ACL for the entire system, however, because our security requirements are simple, so this feature
is not demonstrated.

Our resulting models.py file will now look like so:

366

33.6. ADDING AUTHORIZATION

1 from persistent import Persistent
2 from persistent.mapping import PersistentMapping
3

4 from pyramid.security import Allow
5 from pyramid.security import Everyone
6

7 class Wiki(PersistentMapping):
8 __name__ = None
9 __parent__ = None

10 __acl__ = [(Allow, Everyone, ’view’),
11 (Allow, ’group:editors’, ’edit’)]
12

13 class Page(Persistent):
14 def __init__(self, data):
15 self.data = data
16

17 def appmaker(zodb_root):
18 if not ’app_root’ in zodb_root:
19 app_root = Wiki()
20 frontpage = Page(’This is the front page’)
21 app_root[’FrontPage’] = frontpage
22 frontpage.__name__ = ’FrontPage’
23 frontpage.__parent__ = app_root
24 zodb_root[’app_root’] = app_root
25 import transaction
26 transaction.commit()
27 return zodb_root[’app_root’]

33.6.4 Adding Login and Logout Views

We’ll add a login view which renders a login form and processes the post from the login form, checking
credentials.

We’ll also add a logout view to our application and provide a link to it. This view will clear the
credentials of the logged in user and redirect back to the front page.

We’ll add a different file (for presentation convenience) to add login and logout views. Add a file named
login.py to your application (in the same directory as views.py) with the following content:

1 from pyramid.httpexceptions import HTTPFound
2

3 from pyramid.security import remember

367

33. ZODB + TRAVERSAL WIKI TUTORIAL

4 from pyramid.security import forget
5 from pyramid.view import view_config
6

7 from tutorial.security import USERS
8

9 @view_config(context=’tutorial.models.Wiki’, name=’login’,
10 renderer=’templates/login.pt’)
11 @view_config(context=’pyramid.httpexceptions.HTTPForbidden’,
12 renderer=’templates/login.pt’)
13 def login(request):
14 login_url = request.resource_url(request.context, ’login’)
15 referrer = request.url
16 if referrer == login_url:
17 referrer = ’/’ # never use the login form itself as came_from
18 came_from = request.params.get(’came_from’, referrer)
19 message = ’’
20 login = ’’
21 password = ’’
22 if ’form.submitted’ in request.params:
23 login = request.params[’login’]
24 password = request.params[’password’]
25 if USERS.get(login) == password:
26 headers = remember(request, login)
27 return HTTPFound(location = came_from,
28 headers = headers)
29 message = ’Failed login’
30

31 return dict(
32 message = message,
33 url = request.application_url + ’/login’,
34 came_from = came_from,
35 login = login,
36 password = password,
37)
38

39 @view_config(context=’tutorial.models.Wiki’, name=’logout’)
40 def logout(request):
41 headers = forget(request)
42 return HTTPFound(location = request.resource_url(request.context),
43 headers = headers)

Note that the login view callable in the login.py file has two view configuration decorators. The
order of these decorators is unimportant. Each just adds a different view configuration for the login
view callable.

The first view configuration decorator configures the login view callable so it will be invoked when
someone visits /login (when the context is a Wiki and the view name is login). The second decorator

368

33.6. ADDING AUTHORIZATION

(with context of pyramid.httpexceptions.HTTPForbidden) specifies a forbidden view. This
configures our login view to be presented to the user when Pyramid detects that a view invocation can
not be authorized. Because we’ve configured a forbidden view, the login view callable will be invoked
whenever one of our users tries to execute a view callable that they are not allowed to invoke as determined
by the authorization policy in use. In our application, for example, this means that if a user has not logged
in, and he tries to add or edit a Wiki page, he will be shown the login form. Before being allowed to
continue on to the add or edit form, he will have to provide credentials that give him permission to add or
edit via this login form.

33.6.5 Changing Existing Views

Then we need to change each of our view_page, edit_page and add_page views in views.py
to pass a “logged in” parameter into its template. We’ll add something like this to each view body:

1 from pyramid.security import authenticated_userid
2 logged_in = authenticated_userid(request)

We’ll then change the return value of each view that has an associated renderer to pass the resulting
logged_in value to the template. For example:

1 return dict(page = context,
2 content = content,
3 logged_in = logged_in,
4 edit_url = edit_url)

33.6.6 Adding permission Declarations to our view_config Decorators

To protect each of our views with a particular permission, we need to pass a permission argument to
each of our pyramid.view.view_config decorators. To do so, within views.py:

• We add permission=’view’ to the decorator attached to the view_wiki and view_page
view functions. This makes the assertion that only users who possess the view permission
against the context resource at the time of the request may invoke these views. We’ve granted
pyramid.security.Everyone the view permission at the root model via its ACL, so every-
one will be able to invoke the view_wiki and view_page views.

369

33. ZODB + TRAVERSAL WIKI TUTORIAL

• We add permission=’edit’ to the decorator attached to the add_page and edit_page
view functions. This makes the assertion that only users who possess the effective edit permission
against the context resource at the time of the request may invoke these views. We’ve granted the
group:editors principal the edit permission at the root model via its ACL, so only a user
whom is a member of the group named group:editors will able to invoke the add_page
or edit_page views. We’ve likewise given the editor user membership to this group via
the security.py file by mapping him to the group:editors group in the GROUPS data
structure (GROUPS = {’editor’:[’group:editors’]}); the groupfinder function
consults the GROUPS data structure. This means that the editor user can add and edit pages.

33.6.7 Adding the login.pt Template

Add a login.pt template to your templates directory. It’s referred to within the login view we just
added to login.py.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
xmlns:tal="http://xml.zope.org/namespaces/tal">

<head>
<title>Login - Pyramid tutorial wiki (based on TurboGears

20-Minute Wiki)</title>
<meta http-equiv="Content-Type" content="text/html;charset=UTF-8"/>
<meta name="keywords" content="python web application" />
<meta name="description" content="pyramid web application" />
<link rel="shortcut icon"

href="${request.static_url(’tutorial:static/favicon.ico’)}" />
<link rel="stylesheet"

href="${request.static_url(’tutorial:static/pylons.css’)}"
type="text/css" media="screen" charset="utf-8" />

<!--[if lte IE 6]>
<link rel="stylesheet"

href="${request.static_url(’tutorial:static/ie6.css’)}"
type="text/css" media="screen" charset="utf-8" />

<![endif]-->
</head>
<body>
<div id="wrap">

<div id="top-small">
<div class="top-small align-center">
<div>

<img width="220" height="50" alt="pyramid"
src="${request.static_url(’tutorial:static/pyramid-small.png’)}" />
</div>

370

33.6. ADDING AUTHORIZATION

</div>
</div>
<div id="middle">
<div class="middle align-right">

<div id="left" class="app-welcome align-left">
Login

</div>
<div id="right" class="app-welcome align-right"></div>

</div>
</div>
<div id="bottom">
<div class="bottom">

<form action="${url}" method="post">
<input type="hidden" name="came_from" value="${came_from}"/>
<input type="text" name="login" value="${login}"/>

<input type="password" name="password"

value="${password}"/>

<input type="submit" name="form.submitted" value="Log In"/>

</form>
</div>

</div>
</div>
<div id="footer">

<div class="footer"
>© Copyright 2008-2011, Agendaless Consulting.</div>

</div>
</body>
</html>

33.6.8 Change view.pt and edit.pt

We’ll also need to change our edit.pt and view.pt templates to display a “Logout” link if someone
is logged in. This link will invoke the logout view.

To do so we’ll add this to both templates within the <div id="right" class="app-welcome
align-right"> div:

Logout

371

33. ZODB + TRAVERSAL WIKI TUTORIAL

33.6.9 Seeing Our Changes To views.py and our Templates

Our views.py module will look something like this when we’re done:

1 from docutils.core import publish_parts
2 import re
3

4 from pyramid.httpexceptions import HTTPFound
5 from pyramid.view import view_config
6 from pyramid.security import authenticated_userid
7

8 from tutorial.models import Page
9

10 # regular expression used to find WikiWords
11 wikiwords = re.compile(r"\b([A-Z]\w+[A-Z]+\w+)")
12

13 @view_config(context=’tutorial.models.Wiki’, permission=’view’)
14 def view_wiki(context, request):
15 return HTTPFound(location=request.resource_url(context, ’FrontPage’))
16

17 @view_config(context=’tutorial.models.Page’,
18 renderer=’templates/view.pt’, permission=’view’)
19 def view_page(context, request):
20 wiki = context.__parent__
21

22 def check(match):
23 word = match.group(1)
24 if word in wiki:
25 page = wiki[word]
26 view_url = request.resource_url(page)
27 return ’%s’ % (view_url, word)
28 else:
29 add_url = request.application_url + ’/add_page/’ + word
30 return ’%s’ % (add_url, word)
31

32 content = publish_parts(context.data, writer_name=’html’)[’html_body’]
33 content = wikiwords.sub(check, content)
34 edit_url = request.resource_url(context, ’edit_page’)
35

36 logged_in = authenticated_userid(request)
37

38 return dict(page = context, content = content, edit_url = edit_url,
39 logged_in = logged_in)
40

41 @view_config(name=’add_page’, context=’tutorial.models.Wiki’,
42 renderer=’templates/edit.pt’,

372

33.6. ADDING AUTHORIZATION

43 permission=’edit’)
44 def add_page(context, request):
45 name = request.subpath[0]
46 if ’form.submitted’ in request.params:
47 body = request.params[’body’]
48 page = Page(body)
49 page.__name__ = name
50 page.__parent__ = context
51 context[name] = page
52 return HTTPFound(location = request.resource_url(page))
53 save_url = request.resource_url(context, ’add_page’, name)
54 page = Page(’’)
55 page.__name__ = name
56 page.__parent__ = context
57

58 logged_in = authenticated_userid(request)
59

60 return dict(page = page, save_url = save_url, logged_in = logged_in)
61

62 @view_config(name=’edit_page’, context=’tutorial.models.Page’,
63 renderer=’templates/edit.pt’,
64 permission=’edit’)
65 def edit_page(context, request):
66 if ’form.submitted’ in request.params:
67 context.data = request.params[’body’]
68 return HTTPFound(location = request.resource_url(context))
69

70 logged_in = authenticated_userid(request)
71

72 return dict(page = context,
73 save_url = request.resource_url(context, ’edit_page’),
74 logged_in = logged_in)

Our edit.pt template will look something like this when we’re done:

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
4 xmlns:tal="http://xml.zope.org/namespaces/tal">
5 <head>
6 <title>${page.__name__} - Pyramid tutorial wiki (based on
7 TurboGears 20-Minute Wiki)</title>
8 <meta http-equiv="Content-Type" content="text/html;charset=UTF-8"/>
9 <meta name="keywords" content="python web application" />

10 <meta name="description" content="pyramid web application" />
11 <link rel="shortcut icon"

373

33. ZODB + TRAVERSAL WIKI TUTORIAL

12 href="${request.static_url(’tutorial:static/favicon.ico’)}" />
13 <link rel="stylesheet"
14 href="${request.static_url(’tutorial:static/pylons.css’)}"
15 type="text/css" media="screen" charset="utf-8" />
16 <!--[if lte IE 6]>
17 <link rel="stylesheet"
18 href="${request.static_url(’tutorial:static/ie6.css’)}"
19 type="text/css" media="screen" charset="utf-8" />
20 <![endif]-->
21 </head>
22 <body>
23 <div id="wrap">
24 <div id="top-small">
25 <div class="top-small align-center">
26 <div>
27 <img width="220" height="50" alt="pyramid"
28 src="${request.static_url(’tutorial:static/pyramid-small.png’)}" />
29 </div>
30 </div>
31 </div>
32 <div id="middle">
33 <div class="middle align-right">
34 <div id="left" class="app-welcome align-left">
35 Editing Page Name
36 Goes Here

37 You can return to the
38 FrontPage.

39 </div>
40 <div id="right" class="app-welcome align-right">
41
42 Logout
43
44 </div>
45 </div>
46 </div>
47 <div id="bottom">
48 <div class="bottom">
49 <form action="${save_url}" method="post">
50 <textarea name="body" tal:content="page.data" rows="10"
51 cols="60"/>

52 <input type="submit" name="form.submitted" value="Save"/>
53 </form>
54 </div>
55 </div>
56 </div>
57 <div id="footer">

374

33.6. ADDING AUTHORIZATION

58 <div class="footer"
59 >© Copyright 2008-2011, Agendaless Consulting.</div>
60 </div>
61 </body>
62 </html>

Our view.pt template will look something like this when we’re done:

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
4 xmlns:tal="http://xml.zope.org/namespaces/tal">
5 <head>
6 <title>${page.__name__} - Pyramid tutorial wiki (based on
7 TurboGears 20-Minute Wiki)</title>
8 <meta http-equiv="Content-Type" content="text/html;charset=UTF-8"/>
9 <meta name="keywords" content="python web application" />

10 <meta name="description" content="pyramid web application" />
11 <link rel="shortcut icon"
12 href="${request.static_url(’tutorial:static/favicon.ico’)}" />
13 <link rel="stylesheet"
14 href="${request.static_url(’tutorial:static/pylons.css’)}"
15 type="text/css" media="screen" charset="utf-8" />
16 <!--[if lte IE 6]>
17 <link rel="stylesheet"
18 href="${request.static_url(’tutorial:static/ie6.css’)}"
19 type="text/css" media="screen" charset="utf-8" />
20 <![endif]-->
21 </head>
22 <body>
23 <div id="wrap">
24 <div id="top-small">
25 <div class="top-small align-center">
26 <div>
27 <img width="220" height="50" alt="pyramid"
28 src="${request.static_url(’tutorial:static/pyramid-small.png’)}" />
29 </div>
30 </div>
31 </div>
32 <div id="middle">
33 <div class="middle align-right">
34 <div id="left" class="app-welcome align-left">
35 Viewing Page Name
36 Goes Here

37 You can return to the
38 FrontPage.

375

33. ZODB + TRAVERSAL WIKI TUTORIAL

39 </div>
40 <div id="right" class="app-welcome align-right">
41
42 Logout
43
44 </div>
45 </div>
46 </div>
47 <div id="bottom">
48 <div class="bottom">
49 <div tal:replace="structure content">
50 Page text goes here.
51 </div>
52 <p>
53 <a tal:attributes="href edit_url" href="">
54 Edit this page
55
56 </p>
57 </div>
58 </div>
59 </div>
60 <div id="footer">
61 <div class="footer"
62 >© Copyright 2008-2011, Agendaless Consulting.</div>
63 </div>
64 </body>
65 </html>

33.6.10 Viewing the Application in a Browser

We can finally examine our application in a browser. The views we’ll try are as follows:

• Visiting http://localhost:6543/ in a browser invokes the view_wiki view. This always
redirects to the view_page view of the FrontPage page resource. It is executable by any user.

• Visiting http://localhost:6543/FrontPage/ in a browser invokes the view_page
view of the FrontPage Page resource. This is because it’s the default view (a view without a
name) for Page resources. It is executable by any user.

• Visiting http://localhost:6543/FrontPage/edit_page in a browser invokes the edit
view for the FrontPage Page resource. It is executable by only the editor user. If a different
user (or the anonymous user) invokes it, a login form will be displayed. Supplying the credentials
with the username editor, password editor will show the edit page form being displayed.

376

33.7. ADDING TESTS

• Visiting http://localhost:6543/add_page/SomePageName in a browser invokes the
add view for a page. It is executable by only the editor user. If a different user (or the anony-
mous user) invokes it, a login form will be displayed. Supplying the credentials with the username
editor, password editor will show the edit page form being displayed.

• After logging in (as a result of hitting an edit or add page and submitting the login form with the
editor credentials), we’ll see a Logout link in the upper right hand corner. When we click it,
we’re logged out, and redirected back to the front page.

33.7 Adding Tests

We will now add tests for the models and the views and a few functional tests in the tests.py. Tests
ensure that an application works, and that it continues to work after some changes are made in the future.

33.7.1 Testing the Models

We write tests for the model classes and the appmaker. Changing tests.py, we’ll write a separate test
class for each model class, and we’ll write a test class for the appmaker.

To do so, we’ll retain the tutorial.tests.ViewTests class provided as a result of the
pyramid_zodb project generator. We’ll add three test classes: one for the Page model named
PageModelTests, one for the Wiki model named WikiModelTests, and one for the appmaker
named AppmakerTests.

33.7.2 Testing the Views

We’ll modify our tests.py file, adding tests for each view function we added above. As a re-
sult, we’ll delete the ViewTests test in the file, and add four other test classes: ViewWikiTests,
ViewPageTests, AddPageTests, and EditPageTests. These test the view_wiki,
view_page, add_page, and edit_page views respectively.

33.7.3 Functional tests

We test the whole application, covering security aspects that are not tested in the unit tests, like logging
in, logging out, checking that the viewer user cannot add or edit pages, but the editor user can, and
so on.

377

33. ZODB + TRAVERSAL WIKI TUTORIAL

33.7.4 Viewing the results of all our edits to tests.py

Once we’re done with the tests.py module, it will look a lot like the below:

1 import unittest
2

3 from pyramid import testing
4

5 class PageModelTests(unittest.TestCase):
6

7 def _getTargetClass(self):
8 from tutorial.models import Page
9 return Page

10

11 def _makeOne(self, data=u’some data’):
12 return self._getTargetClass()(data=data)
13

14 def test_constructor(self):
15 instance = self._makeOne()
16 self.assertEqual(instance.data, u’some data’)
17

18 class WikiModelTests(unittest.TestCase):
19

20 def _getTargetClass(self):
21 from tutorial.models import Wiki
22 return Wiki
23

24 def _makeOne(self):
25 return self._getTargetClass()()
26

27 def test_it(self):
28 wiki = self._makeOne()
29 self.assertEqual(wiki.__parent__, None)
30 self.assertEqual(wiki.__name__, None)
31

32 class AppmakerTests(unittest.TestCase):
33 def _callFUT(self, zodb_root):
34 from tutorial.models import appmaker
35 return appmaker(zodb_root)
36

37 def test_it(self):
38 root = {}
39 self._callFUT(root)
40 self.assertEqual(root[’app_root’][’FrontPage’].data,
41 ’This is the front page’)
42

378

33.7. ADDING TESTS

43 class ViewWikiTests(unittest.TestCase):
44 def test_it(self):
45 from tutorial.views import view_wiki
46 context = testing.DummyResource()
47 request = testing.DummyRequest()
48 response = view_wiki(context, request)
49 self.assertEqual(response.location, ’http://example.com/FrontPage’)
50

51 class ViewPageTests(unittest.TestCase):
52 def _callFUT(self, context, request):
53 from tutorial.views import view_page
54 return view_page(context, request)
55

56 def test_it(self):
57 wiki = testing.DummyResource()
58 wiki[’IDoExist’] = testing.DummyResource()
59 context = testing.DummyResource(data=’Hello CruelWorld IDoExist’)
60 context.__parent__ = wiki
61 context.__name__ = ’thepage’
62 request = testing.DummyRequest()
63 info = self._callFUT(context, request)
64 self.assertEqual(info[’page’], context)
65 self.assertEqual(
66 info[’content’],
67 ’<div class="document">\n’
68 ’<p>Hello ’
69 ’CruelWorld ’
70 ’’
71 ’IDoExist’
72 ’</p>\n</div>\n’)
73 self.assertEqual(info[’edit_url’],
74 ’http://example.com/thepage/edit_page’)
75

76

77 class AddPageTests(unittest.TestCase):
78 def _callFUT(self, context, request):
79 from tutorial.views import add_page
80 return add_page(context, request)
81

82 def test_it_notsubmitted(self):
83 context = testing.DummyResource()
84 request = testing.DummyRequest()
85 request.subpath = [’AnotherPage’]
86 info = self._callFUT(context, request)
87 self.assertEqual(info[’page’].data,’’)
88 self.assertEqual(

379

33. ZODB + TRAVERSAL WIKI TUTORIAL

89 info[’save_url’],
90 request.resource_url(context, ’add_page’, ’AnotherPage’))
91

92 def test_it_submitted(self):
93 context = testing.DummyResource()
94 request = testing.DummyRequest({’form.submitted’:True,
95 ’body’:’Hello yo!’})
96 request.subpath = [’AnotherPage’]
97 self._callFUT(context, request)
98 page = context[’AnotherPage’]
99 self.assertEqual(page.data, ’Hello yo!’)

100 self.assertEqual(page.__name__, ’AnotherPage’)
101 self.assertEqual(page.__parent__, context)
102

103 class EditPageTests(unittest.TestCase):
104 def _callFUT(self, context, request):
105 from tutorial.views import edit_page
106 return edit_page(context, request)
107

108 def test_it_notsubmitted(self):
109 context = testing.DummyResource()
110 request = testing.DummyRequest()
111 info = self._callFUT(context, request)
112 self.assertEqual(info[’page’], context)
113 self.assertEqual(info[’save_url’],
114 request.resource_url(context, ’edit_page’))
115

116 def test_it_submitted(self):
117 context = testing.DummyResource()
118 request = testing.DummyRequest({’form.submitted’:True,
119 ’body’:’Hello yo!’})
120 response = self._callFUT(context, request)
121 self.assertEqual(response.location, ’http://example.com/’)
122 self.assertEqual(context.data, ’Hello yo!’)
123

124 class FunctionalTests(unittest.TestCase):
125

126 viewer_login = ’/login?login=viewer&password=viewer’ \
127 ’&came_from=FrontPage&form.submitted=Login’
128 viewer_wrong_login = ’/login?login=viewer&password=incorrect’ \
129 ’&came_from=FrontPage&form.submitted=Login’
130 editor_login = ’/login?login=editor&password=editor’ \
131 ’&came_from=FrontPage&form.submitted=Login’
132

133 def setUp(self):
134 import tempfile

380

33.7. ADDING TESTS

135 import os.path
136 from tutorial import main
137 self.tmpdir = tempfile.mkdtemp()
138

139 dbpath = os.path.join(self.tmpdir, ’test.db’)
140 uri = ’file://’ + dbpath
141 settings = { ’zodbconn.uri’ : uri ,
142 ’pyramid.includes’: [’pyramid_zodbconn’, ’pyramid_tm’] }
143

144 app = main({}, **settings)
145 self.db = app.registry.zodb_database
146 from webtest import TestApp
147 self.testapp = TestApp(app)
148

149 def tearDown(self):
150 import shutil
151 self.db.close()
152 shutil.rmtree(self.tmpdir)
153

154 def test_root(self):
155 res = self.testapp.get(’/’, status=302)
156 self.assertEqual(res.location, ’http://localhost/FrontPage’)
157

158 def test_FrontPage(self):
159 res = self.testapp.get(’/FrontPage’, status=200)
160 self.assertTrue(’FrontPage’ in res.body)
161

162 def test_unexisting_page(self):
163 res = self.testapp.get(’/SomePage’, status=404)
164 self.assertTrue(’Not Found’ in res.body)
165

166 def test_successful_log_in(self):
167 res = self.testapp.get(self.viewer_login, status=302)
168 self.assertEqual(res.location, ’http://localhost/FrontPage’)
169

170 def test_failed_log_in(self):
171 res = self.testapp.get(self.viewer_wrong_login, status=200)
172 self.assertTrue(’login’ in res.body)
173

174 def test_logout_link_present_when_logged_in(self):
175 res = self.testapp.get(self.viewer_login, status=302)
176 res = self.testapp.get(’/FrontPage’, status=200)
177 self.assertTrue(’Logout’ in res.body)
178

179 def test_logout_link_not_present_after_logged_out(self):
180 res = self.testapp.get(self.viewer_login, status=302)

381

33. ZODB + TRAVERSAL WIKI TUTORIAL

181 res = self.testapp.get(’/FrontPage’, status=200)
182 res = self.testapp.get(’/logout’, status=302)
183 self.assertTrue(’Logout’ not in res.body)
184

185 def test_anonymous_user_cannot_edit(self):
186 res = self.testapp.get(’/FrontPage/edit_page’, status=200)
187 self.assertTrue(’Login’ in res.body)
188

189 def test_anonymous_user_cannot_add(self):
190 res = self.testapp.get(’/add_page/NewPage’, status=200)
191 self.assertTrue(’Login’ in res.body)
192

193 def test_viewer_user_cannot_edit(self):
194 res = self.testapp.get(self.viewer_login, status=302)
195 res = self.testapp.get(’/FrontPage/edit_page’, status=200)
196 self.assertTrue(’Login’ in res.body)
197

198 def test_viewer_user_cannot_add(self):
199 res = self.testapp.get(self.viewer_login, status=302)
200 res = self.testapp.get(’/add_page/NewPage’, status=200)
201 self.assertTrue(’Login’ in res.body)
202

203 def test_editors_member_user_can_edit(self):
204 res = self.testapp.get(self.editor_login, status=302)
205 res = self.testapp.get(’/FrontPage/edit_page’, status=200)
206 self.assertTrue(’Editing’ in res.body)
207

208 def test_editors_member_user_can_add(self):
209 res = self.testapp.get(self.editor_login, status=302)
210 res = self.testapp.get(’/add_page/NewPage’, status=200)
211 self.assertTrue(’Editing’ in res.body)
212

213 def test_editors_member_user_can_view(self):
214 res = self.testapp.get(self.editor_login, status=302)
215 res = self.testapp.get(’/FrontPage’, status=200)
216 self.assertTrue(’FrontPage’ in res.body)

33.7.5 Running the Tests

We can run these tests by using setup.py test in the same way we did in Running the Tests. How-
ever, first we must edit our setup.py to include a dependency on WebTest, which we’ve used in our
tests.py. Change the requires list in setup.py to include WebTest.

382

33.7. ADDING TESTS

1 requires = [
2 ’pyramid’,
3 ’pyramid_zodbconn’,
4 ’pyramid_tm’,
5 ’pyramid_debugtoolbar’,
6 ’ZODB3’,
7 ’docutils’,
8 ’WebTest’, # add this
9]

After we’ve added a dependency on WebTest in setup.py, we need to rerun setup.py develop to
get WebTest installed into our virtualenv. Assuming our shell’s current working directory is the “tutorial”
distribution directory:

On UNIX:

$../bin/python setup.py develop

On Windows:

c:\pyramidtut\tutorial> ..\Scripts\python setup.py develop

Once that command has completed successfully, we can run the tests themselves:

On UNIX:

$../bin/python setup.py test -q

On Windows:

c:\pyramidtut\tutorial> ..\Scripts\python setup.py test -q

The expected result looks something like:

.........
--
Ran 23 tests in 1.653s

OK

383

33. ZODB + TRAVERSAL WIKI TUTORIAL

33.8 Distributing Your Application

Once your application works properly, you can create a “tarball” from it by using the setup.py sdist
command. The following commands assume your current working directory is the tutorial package
we’ve created and that the parent directory of the tutorial package is a virtualenv representing a
Pyramid environment.

On UNIX:

$../bin/python setup.py sdist

On Windows:

c:\pyramidtut> ..\Scripts\python setup.py sdist

The output of such a command will be something like:

running sdist
.. more output ..
creating dist
tar -cf dist/tutorial-0.1.tar tutorial-0.1
gzip -f9 dist/tutorial-0.1.tar
removing ’tutorial-0.1’ (and everything under it)

Note that this command creates a tarball in the “dist” subdirectory named tutorial-0.1.tar.gz.
You can send this file to your friends to show them your cool new application. They should be able to
install it by pointing the easy_install command directly at it. Or you can upload it to PyPI and share
it with the rest of the world, where it can be downloaded via easy_install remotely like any other
package people download from PyPI.

384

http://pypi.python.org

CHAPTER

THIRTYFOUR

SQLALCHEMY + URL DISPATCH
WIKI TUTORIAL

This tutorial introduces a SQLAlchemy and url dispatch -based Pyramid application to a developer familiar
with Python, and will be most familiar to developers who have used the Pylons 1.X web framework. When
the tutorial is finished, the developer will have created a basic Wiki application with authentication.

For cut and paste purposes, the source code for all stages of this tutorial can be browsed at
http://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki2/src/.

34.1 Background

This tutorial presents a Pyramid application that uses technologies which will be familiar to someone
with Pylons experience. It uses SQLAlchemy as a persistence mechanism and url dispatch to map URLs
to code. It can also be followed by people without any prior Python web framework experience.

To code along with this tutorial, the developer will need a UNIX machine with development tools (Mac
OS X with XCode, any Linux or BSD variant, etc) or a Windows system of any kind.

Have fun!

34.2 Installation

This tutorial assumes that Python and virtualenv are already installed and working in your system. If you
need help setting this up, you should refer to the chapters on Installing Pyramid.

385

http://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki2/src/

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

34.2.1 Preparation

Please take the following steps to prepare for the tutorial. The steps are slightly different depending on
whether you’re using UNIX or Windows.

Preparation, UNIX

1. Install SQLite3 and its development packages if you don’t already have them installed. Usually
this is via your system’s package manager. For example, on a Debian Linux system, do sudo
apt-get install libsqlite3-dev.

2. Use your Python’s virtualenv to make a workspace:

$ path/to/my/Python-2.6/bin/virtualenv --no-site-packages pyramidtut

3. Switch to the pyramidtut directory:

$ cd pyramidtut

4. Use easy_install to get Pyramid and its direct dependencies installed:

$ bin/easy_install pyramid

5. Use easy_install to install various packages from PyPI.

$ bin/easy_install docutils nose coverage zope.sqlalchemy \
SQLAlchemy pyramid_tm

Preparation, Windows

1. Use your Python’s virtualenv to make a workspace:

c:\> c:\Python26\Scripts\virtualenv --no-site-packages pyramidtut

2. Switch to the pyramidtut directory:

386

34.2. INSTALLATION

c:\> cd pyramidtut

3. Use easy_install to get Pyramid and its direct dependencies installed:

c:\pyramidtut> Scripts\easy_install pyramid

4. Use easy_install to install various packages from PyPI.

c:\pyramidtut> Scripts\easy_install docutils \
nose coverage zope.sqlalchemy SQLAlchemy pyramid_tm

34.2.2 Making a Project

Your next step is to create a project. Pyramid supplies a variety of scaffolds to generate sample
projects. We will use the pyramid_routesalchemy scaffold, which generates an application that
uses SQLAlchemy and URL dispatch.

The below instructions assume your current working directory is the “virtualenv” named “pyramidtut”.

On UNIX:

$ bin/paster create -t pyramid_routesalchemy tutorial

On Windows:

c:\pyramidtut> Scripts\paster create -t pyramid_routesalchemy tutorial

If you are using Windows, the pyramid_routesalchemy scaffold may not deal gracefully
with installation into a location that contains spaces in the path. If you experience startup problems,
try putting both the virtualenv and the project into directories that do not contain spaces in their paths.

387

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

34.2.3 Installing the Project in “Development Mode”

In order to do development on the project easily, you must “register” the project as a development egg
in your workspace using the setup.py develop command. In order to do so, cd to the “tutorial”
directory you created in Making a Project, and run the “setup.py develop” command using virtualenv
Python interpreter.

On UNIX:

$ cd tutorial
$../bin/python setup.py develop

On Windows:

c:\pyramidtut> cd tutorial
c:\pyramidtut\tutorial> ..\Scripts\python setup.py develop

34.2.4 Running the Tests

After you’ve installed the project in development mode, you may run the tests for the project.

On UNIX:

$../bin/python setup.py test -q

On Windows:

c:\pyramidtut\tutorial> ..\Scripts\python setup.py test -q

34.2.5 Starting the Application

Start the application.

On UNIX:

388

34.2. INSTALLATION

$../bin/paster serve development.ini --reload

On Windows:

c:\pyramidtut\tutorial> ..\Scripts\paster serve development.ini --reload

34.2.6 Exposing Test Coverage Information

You can run the nosetests command to see test coverage information. This runs the tests in the same
way that setup.py test does but provides additional “coverage” information, exposing which lines
of your project are “covered” (or not covered) by the tests.

To get this functionality working, we’ll need to install a couple of other packages into our virtualenv:
nose and coverage:

On UNIX:

$../bin/easy_install nose coverage

On Windows:

c:\pyramidtut\tutorial> ..\Scripts\easy_install nose coverage

Once nose and coverage are installed, we can actually run the coverage tests.

On UNIX:

$../bin/nosetests --cover-package=tutorial --cover-erase --with-coverage

On Windows:

c:\pyramidtut\tutorial> ..\Scripts\nosetests --cover-package=tutorial ^
--cover-erase --with-coverage

Looks like our package’s models module doesn’t quite have 100% test coverage.

389

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

34.2.7 Visit the Application in a Browser

In a browser, visit http://localhost:6543/. You will see the generated application’s default page.

One thing you’ll notice is the “debug toolbar” icon on right hand side of the page. You can read more about
the purpose of the icon at The Debug Toolbar. It allows you to get information about your application
while you develop.

34.2.8 Decisions the pyramid_routesalchemy Scaffold Has Made For
You

Creating a project using the pyramid_routesalchemy scaffold makes the following assumptions:

• you are willing to use SQLAlchemy as a database access tool

• you are willing to use url dispatch to map URLs to code.

Pyramid supports any persistent storage mechanism (e.g. object database or filesystem files, etc).
It also supports an additional mechanism to map URLs to code (traversal). However, for the purposes
of this tutorial, we’ll only be using url dispatch and SQLAlchemy.

34.3 Basic Layout

The starter files generated by the pyramid_routesalchemy scaffold are basic, but they provide a
good orientation for the high-level patterns common to most url dispatch -based Pyramid projects.

The source code for this tutorial stage can be browsed at
http://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki2/src/basiclayout/.

34.3.1 App Startup with __init__.py

A directory on disk can be turned into a Python package by containing an __init__.py file. Even if
empty, this marks a directory as a Python package. We use __init__.py both as a package marker
and to contain configuration code.

The generated development.ini file is read by paster which looks for the application module
in the use variable of the app:main section. The entry point is defined in the Setuptools configura-
tion of this module, specifically in the setup.py file. For this tutorial, the entry point is defined as
tutorial:main and points to a function named main.

First we need some imports to support later code:

390

http://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki2/src/basiclayout/

34.3. BASIC LAYOUT

1 from pyramid.config import Configurator
2 from sqlalchemy import engine_from_config
3

4 from tutorial.models import initialize_sql

Next we define the main function and create a SQLAlchemy database engine from the sqlalchemy.
prefixed settings in the development.ini file’s [app:main] section. This will be a URI (something
like sqlite://):

1 def main(global_config, **settings):
2 """ This function returns a Pyramid WSGI application.
3 """
4 engine = engine_from_config(settings, ’sqlalchemy.’)

We then initialize our SQL database using SQLAlchemy, passing it the engine:

initialize_sql(engine)

The next step is to construct a Configurator:

config = Configurator(settings=settings)

settings is passed to the Configurator as a keyword argument with the dictionary values passed
by PasteDeploy as the **settings argument. This will be a dictionary of settings parsed from
the .ini file, which contains deployment-related values such as pyramid.reload_templates,
db_string, etc.

We now can call pyramid.config.Configurator.add_static_view() with the arguments
static (the name), and tutorial:static (the path):

config.add_static_view(’static’, ’tutorial:static’, cache_max_age=3600)

This registers a static resource view which will match any URL that starts with /static/. This will
serve up static resources for us from within the static directory of our tutorial package, in this
case, via http://localhost:6543/static/ and below. With this declaration, we’re saying that
any URL that starts with /static should go to the static view; any remainder of its path (e.g. the /foo
in /static/foo) will be used to compose a path to a static file resource, such as a CSS file.

Using the configurator we can also register a route configuration via the
pyramid.config.Configurator.add_route() method that will be used when the URL
is /:

391

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

config.add_route(’home’, ’/’)

Since this route has a pattern equalling / it is the route that will be matched when the URL / is visted,
e.g. http://localhost:6543/.

Mapping the home route to code is done by registering a view. You will use
pyramid.config.Configurator.add_view() in URL dispatch to register views for the
routes, mapping your patterns to code:

config.add_view(’tutorial.views.my_view’, route_name=’home’,
renderer=’templates/mytemplate.pt’)

The first positional add_view argument tutorial.views.my_view is the dotted name to a func-
tion we write (generated by the pyramid_routesalchemy scaffold) that is given a request object
and which returns a response or a dictionary. This view also names a renderer, which is a template
which lives in the templates subdirectory of the package. When the tutorial.views.my_view
view returns a dictionary, a renderer will use this template to create a response.

Finally, we use the pyramid.config.Configurator.make_wsgi_app() method to return a
WSGI application:

return config.make_wsgi_app()

Our final __init__.py file will look like this:

1 from pyramid.config import Configurator
2 from sqlalchemy import engine_from_config
3

4 from tutorial.models import initialize_sql
5

6 def main(global_config, **settings):
7 """ This function returns a Pyramid WSGI application.
8 """
9 engine = engine_from_config(settings, ’sqlalchemy.’)

10 initialize_sql(engine)
11 config = Configurator(settings=settings)
12 config.add_static_view(’static’, ’tutorial:static’, cache_max_age=3600)
13 config.add_route(’home’, ’/’)
14 config.add_view(’tutorial.views.my_view’, route_name=’home’,
15 renderer=’templates/mytemplate.pt’)
16 return config.make_wsgi_app()

392

34.3. BASIC LAYOUT

34.3.2 Content Models with models.py

In a SQLAlchemy-based application, a model object is an object composed by querying the SQL database
which backs an application. SQLAlchemy is an “object relational mapper” (an ORM). The models.py
file is where the pyramid_routesalchemy scaffold put the classes that implement our models.

Let’s take a look. First, we need some imports to support later code.

1 import transaction
2

3 from sqlalchemy import Column
4 from sqlalchemy import Integer
5 from sqlalchemy import Unicode
6

7 from sqlalchemy.exc import IntegrityError
8 from sqlalchemy.ext.declarative import declarative_base
9

10 from sqlalchemy.orm import scoped_session
11 from sqlalchemy.orm import sessionmaker
12

13 from zope.sqlalchemy import ZopeTransactionExtension

Next we set up a SQLAlchemy “DBSession” object:

1 DBSession = scoped_session(sessionmaker(
2 extension=ZopeTransactionExtension()))

We also need to create a declarative Base object to use as a base class for our model:

Base = declarative_base()

To give a simple example of a model class, we define one named MyModel:

1 class MyModel(Base):
2 __tablename__ = ’models’
3 id = Column(Integer, primary_key=True)
4 name = Column(Unicode(255), unique=True)
5 value = Column(Integer)
6

7 def __init__(self, name, value):
8 self.name = name
9 self.value = value

393

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

Our sample model has an __init__ that takes a two arguments (name, and value). It stores these
values as self.name and self.value within the __init__ function itself. The MyModel class
also has a __tablename__ attribute. This informs SQLAlchemy which table to use to store the data
representing instances of this class.

Next we define a function named populate which adds a single model instance into our SQL storage
and commits a transaction:

1 def populate():
2 session = DBSession()
3 model = MyModel(name=u’root’,value=55)
4 session.add(model)
5 session.flush()
6 transaction.commit()

The function doesn’t do a lot in this case, but it’s there to illustrate how an application requiring many
objects to be set up could work.

Lastly we have a function named initialize_sql which receives a SQL database engine and binds
it to our SQLAlchemy DBSession object. It also calls the populate function, to do initial database
population. This is the initialization function that is called from __init__.py above.

1 def initialize_sql(engine):
2 DBSession.configure(bind=engine)
3 Base.metadata.bind = engine
4 Base.metadata.create_all(engine)
5 try:
6 populate()
7 except IntegrityError:
8 transaction.abort()

Here is the complete source for models.py:

1 import transaction
2

3 from sqlalchemy import Column
4 from sqlalchemy import Integer
5 from sqlalchemy import Unicode
6

7 from sqlalchemy.exc import IntegrityError
8 from sqlalchemy.ext.declarative import declarative_base
9

10 from sqlalchemy.orm import scoped_session

394

34.4. DEFINING THE DOMAIN MODEL

11 from sqlalchemy.orm import sessionmaker
12

13 from zope.sqlalchemy import ZopeTransactionExtension
14

15 DBSession = scoped_session(sessionmaker(
16 extension=ZopeTransactionExtension()))
17 Base = declarative_base()
18

19 class MyModel(Base):
20 __tablename__ = ’models’
21 id = Column(Integer, primary_key=True)
22 name = Column(Unicode(255), unique=True)
23 value = Column(Integer)
24

25 def __init__(self, name, value):
26 self.name = name
27 self.value = value
28

29 def populate():
30 session = DBSession()
31 model = MyModel(name=u’root’,value=55)
32 session.add(model)
33 session.flush()
34 transaction.commit()
35

36 def initialize_sql(engine):
37 DBSession.configure(bind=engine)
38 Base.metadata.bind = engine
39 Base.metadata.create_all(engine)
40 try:
41 populate()
42 except IntegrityError:
43 transaction.abort()

34.4 Defining the Domain Model

The first change we’ll make to our stock paster-generated application will be to define a domain model
constructor representing a wiki page. We’ll do this inside our models.py file.

The source code for this tutorial stage can be browsed at
http://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki2/src/models/.

395

http://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki2/src/models/

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

34.4.1 Making Edits to models.py

There is nothing automagically special about the filename models.py. A project may have
many models throughout its codebase in arbitrarily-named files. Files implementing models often
have model in their filenames (or they may live in a Python subpackage of your application package
named models) , but this is only by convention.

The first thing we want to do is remove the stock MyModel class from the generated models.py file.
The MyModel class is only a sample and we’re not going to use it.

Next, we’ll remove the sqlalchemy.Unicode import and replace it with sqlalchemy.Text.

1 from sqlalchemy import Text

Then, we’ll add a Page class. Because this is a SQLAlchemy application, this class should inherit from an
instance of sqlalchemy.ext.declarative.declarative_base. Declarative SQLAlchemy
models are easier to use than directly-mapped ones.

1 class Page(Base):
2 """ The SQLAlchemy declarative model class for a Page object. """
3 __tablename__ = ’pages’
4 id = Column(Integer, primary_key=True)
5 name = Column(Text, unique=True)
6 data = Column(Text)
7

8 def __init__(self, name, data):
9 self.name = name

10 self.data = data

As you can see, our Page class has a class level attribute __tablename__ which equals the string
’pages’. This means that SQLAlchemy will store our wiki data in a SQL table named pages.
Our Page class will also have class-level attributes named id, name and data (all instances of
sqlalchemy.Column). These will map to columns in the pages table. The id attribute will be
the primary key in the table. The name attribute will be a text attribute, each value of which needs to be
unique within the column. The data attribute is a text attribute that will hold the body of each page.

We’ll also remove our populate function. We’ll inline the populate step into initialize_sql,
changing our initialize_sql function to add a FrontPage object to our database at startup time.

396

34.4. DEFINING THE DOMAIN MODEL

1 def initialize_sql(engine):
2 DBSession.configure(bind=engine)
3 Base.metadata.bind = engine
4 Base.metadata.create_all(engine)
5 try:
6 transaction.begin()
7 session = DBSession()
8 page = Page(’FrontPage’, ’This is the front page’)
9 session.add(page)

10 transaction.commit()
11 except IntegrityError:
12 # already created
13 transaction.abort()

Here, we’re using a slightly different binding syntax. It is otherwise largely the same as the
initialize_sql in the paster-generated models.py.

Our DBSession assignment stays the same as the original generated models.py.

34.4.2 Looking at the Result of all Our Edits to models.py

The result of all of our edits to models.py will end up looking something like this:

1 import transaction
2

3 from sqlalchemy import Column
4 from sqlalchemy import Integer
5 from sqlalchemy import Text
6

7 from sqlalchemy.exc import IntegrityError
8 from sqlalchemy.ext.declarative import declarative_base
9

10 from sqlalchemy.orm import scoped_session
11 from sqlalchemy.orm import sessionmaker
12

13 from zope.sqlalchemy import ZopeTransactionExtension
14

15 DBSession = scoped_session(sessionmaker(
16 extension=ZopeTransactionExtension()))
17 Base = declarative_base()
18

19 class Page(Base):

397

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

20 """ The SQLAlchemy declarative model class for a Page object. """
21 __tablename__ = ’pages’
22 id = Column(Integer, primary_key=True)
23 name = Column(Text, unique=True)
24 data = Column(Text)
25

26 def __init__(self, name, data):
27 self.name = name
28 self.data = data
29

30 def initialize_sql(engine):
31 DBSession.configure(bind=engine)
32 Base.metadata.bind = engine
33 Base.metadata.create_all(engine)
34 try:
35 transaction.begin()
36 session = DBSession()
37 page = Page(’FrontPage’, ’This is the front page’)
38 session.add(page)
39 transaction.commit()
40 except IntegrityError:
41 # already created
42 transaction.abort()

34.4.3 Viewing the Application in a Browser

We can’t. At this point, our system is in a “non-runnable” state; we’ll need to change view-related files in
the next chapter to be able to start the application successfully. If you try to start the application, you’ll
wind up with a Python traceback on your console that ends with this exception:

ImportError: cannot import name MyModel

This will also happen if you attempt to run the tests.

34.5 Defining Views

A view callable in a url dispatch -based Pyramid application is typically a simple Python function that
accepts a single parameter named request. A view callable is assumed to return a response object.

398

34.5. DEFINING VIEWS

A Pyramid view can also be defined as callable which accepts two arguments: a context and
a request. You’ll see this two-argument pattern used in other Pyramid tutorials and applications.
Either calling convention will work in any Pyramid application; the calling conventions can be used
interchangeably as necessary. In url dispatch based applications, however, the context object is rarely
used in the view body itself, so within this tutorial we define views as callables that accept only a
request to avoid the visual “noise”. If you do need the context within a view function that only
takes the request as a single argument, you can obtain it via request.context.

The request passed to every view that is called as the result of a route match has an attribute named
matchdict that contains the elements placed into the URL by the pattern of a route statement.
For instance, if a call to pyramid.config.Configurator.add_route() in __init__.py
had the pattern {one}/{two}, and the URL at http://example.com/foo/bar was invoked,
matching this pattern, the matchdict dictionary attached to the request passed to the view would have
a ’one’ key with the value ’foo’ and a ’two’ key with the value ’bar’.

The source code for this tutorial stage can be browsed at
http://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki2/src/views/.

34.5.1 Declaring Dependencies in Our setup.py File

The view code in our application will depend on a package which is not a dependency of the original
“tutorial” application. The original “tutorial” application was generated by the paster create com-
mand; it doesn’t know about our custom application requirements. We need to add a dependency on the
docutils package to our tutorial package’s setup.py file by assigning this dependency to the
install_requires parameter in the setup function.

Our resulting setup.py should look like so:

1 import os
2 import sys
3

4 from setuptools import setup, find_packages
5

6 here = os.path.abspath(os.path.dirname(__file__))
7 README = open(os.path.join(here, ’README.txt’)).read()
8 CHANGES = open(os.path.join(here, ’CHANGES.txt’)).read()
9

10 requires = [
11 ’pyramid’,
12 ’SQLAlchemy’,
13 ’transaction’,

399

http://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki2/src/views/

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

14 ’pyramid_tm’,
15 ’pyramid_debugtoolbar’,
16 ’zope.sqlalchemy’,
17 ’docutils’,
18]
19

20 if sys.version_info[:3] < (2,5,0):
21 requires.append(’pysqlite’)
22

23 setup(name=’tutorial’,
24 version=’0.0’,
25 description=’tutorial’,
26 long_description=README + ’\n\n’ + CHANGES,
27 classifiers=[
28 "Programming Language :: Python",
29 "Framework :: Pylons",
30 "Topic :: Internet :: WWW/HTTP",
31 "Topic :: Internet :: WWW/HTTP :: WSGI :: Application",
32],
33 author=’’,
34 author_email=’’,
35 url=’’,
36 keywords=’web wsgi bfg pylons pyramid’,
37 packages=find_packages(),
38 include_package_data=True,
39 zip_safe=False,
40 test_suite=’tutorial’,
41 install_requires = requires,
42 entry_points = """\
43 [paste.app_factory]
44 main = tutorial:main
45 """,
46 paster_plugins=[’pyramid’],
47)

After these new dependencies are added, you will need to rerun python setup.py
develop inside the root of the tutorial package to obtain and register the newly added depen-
dency package.

34.5.2 Adding View Functions

We’ll get rid of our my_view view function in our views.py file. It’s only an example and isn’t
relevant to our application.

400

34.5. DEFINING VIEWS

Then we’re going to add four view callable functions to our views.py module. One view callable
(named view_wiki) will display the wiki itself (it will answer on the root URL), another named
view_page will display an individual page, another named add_page will allow a page to be added,
and a final view callable named edit_page will allow a page to be edited. We’ll describe each one
briefly and show the resulting views.py file afterward.

There is nothing special about the filename views.py. A project may have many view callables
throughout its codebase in arbitrarily-named files. Files implementing view callables often have view
in their filenames (or may live in a Python subpackage of your application package named views),
but this is only by convention.

The view_wiki view function

The view_wiki function is the default view that will be called when a request is made to the root URL
of our wiki. It always redirects to a URL which represents the path to our “FrontPage”.

1 def view_wiki(request):
2 return HTTPFound(location = request.route_url(’view_page’,
3 pagename=’FrontPage’))

The view_wiki function returns an instance of the pyramid.httpexceptions.HTTPFound
class (instances of which implement the pyramid.interfaces.IResponse
interface like pyramid.response.Response does), It will use the
pyramid.request.Request.route_url() API to construct a URL to the FrontPage
page (e.g. http://localhost:6543/FrontPage), and will use it as the “location” of the
HTTPFound response, forming an HTTP redirect.

The view_page view function

The view_page function will be used to show a single page of our wiki. It renders the ReStructuredText
body of a page (stored as the data attribute of a Page object) as HTML. Then it substitutes an HTML
anchor for each WikiWord reference in the rendered HTML using a compiled regular expression.

1 def view_page(request):
2 pagename = request.matchdict[’pagename’]
3 session = DBSession()
4 page = session.query(Page).filter_by(name=pagename).first()
5 if page is None:

401

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

6 return HTTPNotFound(’No such page’)
7

8 def check(match):
9 word = match.group(1)

10 exists = session.query(Page).filter_by(name=word).all()
11 if exists:
12 view_url = request.route_url(’view_page’, pagename=word)
13 return ’%s’ % (view_url, word)
14 else:
15 add_url = request.route_url(’add_page’, pagename=word)
16 return ’%s’ % (add_url, word)
17

18 content = publish_parts(page.data, writer_name=’html’)[’html_body’]
19 content = wikiwords.sub(check, content)
20 edit_url = request.route_url(’edit_page’, pagename=pagename)
21 return dict(page=page, content=content, edit_url=edit_url)

The curried function named check is used as the first argument to wikiwords.sub, indicating that
it should be called to provide a value for each WikiWord match found in the content. If the wiki already
contains a page with the matched WikiWord name, the check function generates a view link to be used
as the substitution value and returns it. If the wiki does not already contain a page with with the matched
WikiWord name, the function generates an “add” link as the substitution value and returns it.

As a result, the content variable is now a fully formed bit of HTML containing various view and add
links for WikiWords based on the content of our current page object.

We then generate an edit URL (because it’s easier to do here than in the template), and we return a dictio-
nary with a number of arguments. The fact that this view returns a dictionary (as opposed to a response
object) is a cue to Pyramid that it should try to use a renderer associated with the view configuration to
render a template. In our case, the template which will be rendered will be the templates/view.pt
template, as per the configuration put into effect in __init__.py.

The add_page view function

The add_page function will be invoked when a user clicks on a WikiWord which isn’t yet represented as
a page in the system. The check function within the view_page view generates URLs to this view. It
also acts as a handler for the form that is generated when we want to add a page object. The matchdict
attribute of the request passed to the add_page view will have the values we need to construct URLs
and find model objects.

402

34.5. DEFINING VIEWS

1 def add_page(request):
2 name = request.matchdict[’pagename’]
3 if ’form.submitted’ in request.params:
4 session = DBSession()
5 body = request.params[’body’]
6 page = Page(name, body)
7 session.add(page)
8 return HTTPFound(location = request.route_url(’view_page’,
9 pagename=name))

10 save_url = request.route_url(’add_page’, pagename=name)
11 page = Page(’’, ’’)
12 return dict(page=page, save_url=save_url)

The matchdict will have a ’pagename’ key that matches the name of the page we’d like to add. If
our add view is invoked via, e.g. http://localhost:6543/add_page/SomeName, the value for
’pagename’ in the matchdict will be ’SomeName’.

If the view execution is not a result of a form submission (if the expression ’form.submitted’ in
request.params is False), the view callable renders a template. To do so, it generates a “save url”
which the template uses as the form post URL during rendering. We’re lazy here, so we’re trying to use
the same template (templates/edit.pt) for the add view as well as the page edit view, so we create
a dummy Page object in order to satisfy the edit form’s desire to have some page object exposed as page,
and Pyramid will render the template associated with this view to a response.

If the view execution is a result of a form submission (if the expression ’form.submitted’ in
request.params is True), we scrape the page body from the form data, create a Page object with
this page body and the name taken from matchdict[’pagename’], and save it into the database
using session.add. We then redirect back to the view_page view for the newly created page.

The edit_page view function

The edit_page function will be invoked when a user clicks the “Edit this Page” button on the view
form. It renders an edit form but it also acts as the handler for the form it renders. The matchdict
attribute of the request passed to the edit_page view will have a ’pagename’ key matching the
name of the page the user wants to edit.

1 def edit_page(request):
2 name = request.matchdict[’pagename’]
3 session = DBSession()
4 page = session.query(Page).filter_by(name=name).one()
5 if ’form.submitted’ in request.params:

403

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

6 page.data = request.params[’body’]
7 session.add(page)
8 return HTTPFound(location = request.route_url(’view_page’,
9 pagename=name))

10 return dict(
11 page=page,
12 save_url = request.route_url(’edit_page’, pagename=name),
13)

If the view execution is not a result of a form submission (if the expression ’form.submitted’ in
request.params is False), the view simply renders the edit form, passing the page object and a
save_url which will be used as the action of the generated form.

If the view execution is a result of a form submission (if the expression ’form.submitted’ in
request.params is True), the view grabs the body element of the request parameters and sets it as
the data attribute of the page object. It then redirects to the view_page view of the wiki page.

34.5.3 Viewing the Result of all Our Edits to views.py

The result of all of our edits to views.py will leave it looking like this:

1 import re
2

3 from docutils.core import publish_parts
4

5 from pyramid.httpexceptions import HTTPFound, HTTPNotFound
6

7 from tutorial.models import DBSession
8 from tutorial.models import Page
9

10 # regular expression used to find WikiWords
11 wikiwords = re.compile(r"\b([A-Z]\w+[A-Z]+\w+)")
12

13 def view_wiki(request):
14 return HTTPFound(location = request.route_url(’view_page’,
15 pagename=’FrontPage’))
16

17 def view_page(request):
18 pagename = request.matchdict[’pagename’]
19 session = DBSession()
20 page = session.query(Page).filter_by(name=pagename).first()
21 if page is None:

404

34.5. DEFINING VIEWS

22 return HTTPNotFound(’No such page’)
23

24 def check(match):
25 word = match.group(1)
26 exists = session.query(Page).filter_by(name=word).all()
27 if exists:
28 view_url = request.route_url(’view_page’, pagename=word)
29 return ’%s’ % (view_url, word)
30 else:
31 add_url = request.route_url(’add_page’, pagename=word)
32 return ’%s’ % (add_url, word)
33

34 content = publish_parts(page.data, writer_name=’html’)[’html_body’]
35 content = wikiwords.sub(check, content)
36 edit_url = request.route_url(’edit_page’, pagename=pagename)
37 return dict(page=page, content=content, edit_url=edit_url)
38

39 def add_page(request):
40 name = request.matchdict[’pagename’]
41 if ’form.submitted’ in request.params:
42 session = DBSession()
43 body = request.params[’body’]
44 page = Page(name, body)
45 session.add(page)
46 return HTTPFound(location = request.route_url(’view_page’,
47 pagename=name))
48 save_url = request.route_url(’add_page’, pagename=name)
49 page = Page(’’, ’’)
50 return dict(page=page, save_url=save_url)
51

52 def edit_page(request):
53 name = request.matchdict[’pagename’]
54 session = DBSession()
55 page = session.query(Page).filter_by(name=name).one()
56 if ’form.submitted’ in request.params:
57 page.data = request.params[’body’]
58 session.add(page)
59 return HTTPFound(location = request.route_url(’view_page’,
60 pagename=name))
61 return dict(
62 page=page,
63 save_url = request.route_url(’edit_page’, pagename=name),
64)

405

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

34.5.4 Adding Templates

The views we’ve added all reference a template. Each template is a Chameleon ZPT template. These
templates will live in the templates directory of our tutorial package.

The view.pt Template

The view.pt template is used for viewing a single wiki page. It is used by the view_page view
function. It should have a div that is “structure replaced” with the content value provided by the view.
It should also have a link on the rendered page that points at the “edit” URL (the URL which invokes the
edit_page view for the page being viewed).

Once we’re done with the view.pt template, it will look a lot like the below:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
xmlns:tal="http://xml.zope.org/namespaces/tal">

<head>
<title>${page.name} - Pyramid tutorial wiki (based on

TurboGears 20-Minute Wiki)</title>
<meta http-equiv="Content-Type" content="text/html;charset=UTF-8"/>
<meta name="keywords" content="python web application" />
<meta name="description" content="pyramid web application" />
<link rel="shortcut icon"

href="${request.static_url(’tutorial:static/favicon.ico’)}" />
<link rel="stylesheet"

href="${request.static_url(’tutorial:static/pylons.css’)}"
type="text/css" media="screen" charset="utf-8" />

<!--[if lte IE 6]>
<link rel="stylesheet"

href="${request.static_url(’tutorial:static/ie6.css’)}"
type="text/css" media="screen" charset="utf-8" />

<![endif]-->
</head>
<body>
<div id="wrap">

<div id="top-small">
<div class="top-small align-center">
<div>

<img width="220" height="50" alt="pyramid"
src="${request.static_url(’tutorial:static/pyramid-small.png’)}" />
</div>

406

34.5. DEFINING VIEWS

</div>
</div>
<div id="middle">
<div class="middle align-right">

<div id="left" class="app-welcome align-left">
Viewing Page Name

Goes Here

You can return to the
FrontPage.

</div>
<div id="right" class="app-welcome align-right"></div>

</div>
</div>
<div id="bottom">
<div class="bottom">

<div tal:replace="structure content">
Page text goes here.

</div>
<p>

<a tal:attributes="href edit_url" href="">
Edit this page

</p>

</div>
</div>

</div>
<div id="footer">

<div class="footer"
>© Copyright 2008-2011, Agendaless Consulting.</div>

</div>
</body>
</html>

The names available for our use in a template are always those that are present in the dictionary
returned by the view callable. But our templates make use of a request object that none of our
tutorial views return in their dictionary. This value appears as if “by magic”. However, request is
one of several names that are available “by default” in a template when a template renderer is used.
See *.pt or *.txt: Chameleon Template Renderers for more information about other names that are
available by default in a template when a Chameleon template is used as a renderer.

407

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

The edit.pt Template

The edit.pt template is used for adding and editing a wiki page. It is used by the add_page
and edit_page view functions. It should display a page containing a form that POSTs back to the
“save_url” argument supplied by the view. The form should have a “body” textarea field (the page data),
and a submit button that has the name “form.submitted”. The textarea in the form should be filled with
any existing page data when it is rendered.

Once we’re done with the edit.pt template, it will look a lot like the below:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
xmlns:tal="http://xml.zope.org/namespaces/tal">

<head>
<title>${page.name} - Pyramid tutorial wiki (based on

TurboGears 20-Minute Wiki)</title>
<meta http-equiv="Content-Type" content="text/html;charset=UTF-8"/>
<meta name="keywords" content="python web application" />
<meta name="description" content="pyramid web application" />
<link rel="shortcut icon"

href="${request.static_url(’tutorial:static/favicon.ico’)}" />
<link rel="stylesheet"

href="${request.static_url(’tutorial:static/pylons.css’)}"
type="text/css" media="screen" charset="utf-8" />

<!--[if lte IE 6]>
<link rel="stylesheet"

href="${request.static_url(’tutorial:static/ie6.css’)}"
type="text/css" media="screen" charset="utf-8" />

<![endif]-->
</head>
<body>
<div id="wrap">

<div id="top-small">
<div class="top-small align-center">
<div>

<img width="220" height="50" alt="pyramid"
src="${request.static_url(’tutorial:static/pyramid-small.png’)}" />
</div>

</div>
</div>
<div id="middle">

<div class="middle align-right">
<div id="left" class="app-welcome align-left">

Editing Page Name Goes
Here

408

34.5. DEFINING VIEWS

You can return to the
FrontPage.

</div>
<div id="right" class="app-welcome align-right"></div>

</div>
</div>
<div id="bottom">
<div class="bottom">

<form action="${save_url}" method="post">
<textarea name="body" tal:content="page.data" rows="10"

cols="60"/>

<input type="submit" name="form.submitted" value="Save"/>

</form>
</div>

</div>
</div>
<div id="footer">

<div class="footer"
>© Copyright 2008-2011, Agendaless Consulting.</div>

</div>
</body>
</html>

Static Assets

Our templates name a single static asset named pylons.css. We don’t need to create this file within
our package’s static directory because it was provided at the time we created the project. This file is a
little too long to replicate within the body of this guide, however it is available online.

This CSS file will be accessed via e.g. http://localhost:6543/static/pylons.css
by virtue of the call to add_static_view directive we’ve made in the __init__.py
file. Any number and type of static assets can be placed in this directory (or subdirecto-
ries) and are just referred to by URL or by using the convenience method static_url e.g.
request.static_url(’{{package}}:static/foo.css’) within templates.

34.5.5 Mapping Views to URLs in __init__.py

The __init__.py file contains pyramid.config.Configurator.add_view() calls which
serve to map routes via url dispatch to views. First, we’ll get rid of the existing route created by the
template using the name ’home’. It’s only an example and isn’t relevant to our application.

We then need to add four calls to add_route. Note that the ordering of these declarations is very
important. route declarations are matched in the order they’re found in the __init__.py file.

409

http://github.com/Pylons/pyramid/blob/master/docs/tutorials/wiki2/src/views/tutorial/static/pylons.css

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

1. Add a declaration which maps the pattern / (signifying the root URL) to the route named
view_wiki.

2. Add a declaration which maps the pattern /{pagename} to the route named view_page. This
is the regular view for a page.

3. Add a declaration which maps the pattern /add_page/{pagename} to the route named
add_page. This is the add view for a new page.

4. Add a declaration which maps the pattern /{pagename}/edit_page to the route named
edit_page. This is the edit view for a page.

After we’ve defined the routes for our application, we can register views to handle the processing and
rendering that needs to happen when each route is requested.

1. Add a declaration which maps the view_wiki route to the view named view_wiki in our
views.py file. This is the default view for the wiki.

2. Add a declaration which maps the view_page route to the view named view_page in our
views.py file.

3. Add a declaration which maps the add_page route to the view named add_page in our
views.py file.

4. Add a declaration which maps the edit_page route to the view named edit_page in our
views.py file.

As a result of our edits, the __init__.py file should look something like so:

1 from pyramid.config import Configurator
2 from sqlalchemy import engine_from_config
3

4 from tutorial.models import initialize_sql
5

6 def main(global_config, **settings):
7 """ This function returns a WSGI application.
8 """
9 engine = engine_from_config(settings, ’sqlalchemy.’)

10 initialize_sql(engine)
11 config = Configurator(settings=settings)
12 config.add_static_view(’static’, ’tutorial:static’, cache_max_age=3600)
13 config.add_route(’view_wiki’, ’/’)
14 config.add_route(’view_page’, ’/{pagename}’)
15 config.add_route(’add_page’, ’/add_page/{pagename}’)
16 config.add_route(’edit_page’, ’/{pagename}/edit_page’)

410

34.6. ADDING AUTHORIZATION

17 config.add_view(’tutorial.views.view_wiki’, route_name=’view_wiki’)
18 config.add_view(’tutorial.views.view_page’, route_name=’view_page’,
19 renderer=’tutorial:templates/view.pt’)
20 config.add_view(’tutorial.views.add_page’, route_name=’add_page’,
21 renderer=’tutorial:templates/edit.pt’)
22 config.add_view(’tutorial.views.edit_page’, route_name=’edit_page’,
23 renderer=’tutorial:templates/edit.pt’)
24 return config.make_wsgi_app()

34.5.6 Viewing the Application in a Browser

We can finally examine our application in a browser. The views we’ll try are as follows:

• Visiting http://localhost:6543 in a browser invokes the view_wiki view. This always
redirects to the view_page view of the FrontPage page object.

• Visiting http://localhost:6543/FrontPage in a browser invokes the view_page view
of the front page page object.

• Visiting http://localhost:6543/FrontPage/edit_page in a browser invokes the edit
view for the front page object.

• Visiting http://localhost:6543/add_page/SomePageName in a browser invokes the
add view for a page.

Try generating an error within the body of a view by adding code to the top of it that generates an
exception (e.g. raise Exception(’Forced Exception’)). Then visit the error-raising view in
a browser. You should see an interactive exception handler in the browser which allows you to examine
values in a post-mortem mode.

34.6 Adding Authorization

Our application currently allows anyone with access to the server to view, edit, and add pages to our wiki.
For purposes of demonstration we’ll change our application to allow only people whom possess a specific
username (editor) to add and edit wiki pages but we’ll continue allowing anyone with access to the server
to view pages. Pyramid provides facilities for authorization and authentication. We’ll make use of both
features to provide security to our application.

411

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

We will add an authentication policy and an authorization policy to our application registry, add a
security.py module, create a root factory with an ACL, and add permission declarations to the
edit_page and add_page views.

Then we will add login and logout views, and modify the existing views to make them return a
logged_in flag to the renderer.

Finally, we will add a login.pt template and change the existing view.pt and edit.pt to show a
“Logout” link when not logged in.

The source code for this tutorial stage can be browsed at
http://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki2/src/authorization/.

34.6.1 Changing __init__.py For Authorization

We’re going to be making several changes to our __init__.py file which will help us configure an
authorization policy.

Adding A Root Factory

We’re going to start to use a custom root factory within our __init__.py file. The objects generated
by the root factory will be used as the context of each request to our application. We do this to allow
Pyramid declarative security to work properly. The context object generated by the root factory during
a request will be decorated with security declarations. When we begin to use a custom root factory to
generate our contexts, we can begin to make use of the declarative security features of Pyramid.

We’ll modify our __init__.py, passing in a root factory to our Configurator constructor. We’ll point it
at a new class we create inside our models.py file. Add the following statements to your models.py
file:

1 from pyramid.security import Allow
2 from pyramid.security import Everyone
3

4 class RootFactory(object):
5 __acl__ = [(Allow, Everyone, ’view’),
6 (Allow, ’group:editors’, ’edit’)]
7 def __init__(self, request):
8 pass

412

http://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki2/src/authorization/

34.6. ADDING AUTHORIZATION

The RootFactory class we’ve just added will be used by Pyramid to construct a context object. The
context is attached to the request object passed to our view callables as the context attribute.

The context object generated by our root factory will possess an __acl__ attribute that allows
pyramid.security.Everyone (a special principal) to view all pages, while allowing only a prin-
cipal named group:editors to edit and add pages. The __acl__ attribute attached to a context is
interpreted specially by Pyramid as an access control list during view callable execution. See Assigning
ACLs to your Resource Objects for more information about what an ACL represents.

We’ll pass the RootFactory we created in the step above in as the root_factory argument to a
Configurator.

Configuring an Authorization Policy

For any Pyramid application to perform authorization, we need to add a security.py module (we’ll
do that shortly) and we’ll need to change our __init__.py file to add an authentication policy and an
authorization policy which uses the security.py file for a callback.

We’ll change our __init__.py file to enable an AuthTktAuthenticationPolicy and an
ACLAuthorizationPolicy to enable declarative security checking. We need to import the new
policies:

1 from pyramid.authentication import AuthTktAuthenticationPolicy
2 from pyramid.authorization import ACLAuthorizationPolicy
3 from tutorial.security import groupfinder

Then, we’ll add those policies to the configuration:

1 authn_policy = AuthTktAuthenticationPolicy(
2 ’sosecret’, callback=groupfinder)
3 authz_policy = ACLAuthorizationPolicy()
4 config = Configurator(settings=settings,
5 root_factory=’tutorial.models.RootFactory’,
6 authentication_policy=authn_policy,
7 authorization_policy=authz_policy)

Note that that the pyramid.authentication.AuthTktAuthenticationPolicy constructor
accepts two arguments: secret and callback. secret is a string representing an encryption key
used by the “authentication ticket” machinery represented by this policy: it is required. The callback is
a groupfinder function in the current directory’s security.py file. We haven’t added that module
yet, but we’re about to.

We’ll also change __init__.py, adding a call to pyramid.config.Configurator.add_view()
that points at our login view callable. This is also known as a forbidden view:

413

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

1 config.add_route(’login’, ’/login’)
2 config.add_view(’tutorial.login.login’,
3 context=’pyramid.httpexceptions.HTTPForbidden’,
4 renderer=’tutorial:templates/login.pt’)

A forbidden view configures our newly created login view to show up when Pyramid detects that a view
invocation can not be authorized.

A logout view callable will allow users to log out later:

1 config.add_route(’logout’, ’/logout’)
2 config.add_view(’tutorial.login.logout’, route_name=’logout’)

We’ll also add permission arguments with the value edit to the edit_page and add_page views.
This indicates that the view callables which these views reference cannot be invoked without the authen-
ticated user possessing the edit permission with respect to the current context.

1 config.add_view(’tutorial.views.add_page’, route_name=’add_page’,
2 renderer=’tutorial:templates/edit.pt’, permission=’edit’)
3 config.add_view(’tutorial.views.edit_page’, route_name=’edit_page’,
4 renderer=’tutorial:templates/edit.pt’, permission=’edit’)

Adding these permission arguments causes Pyramid to make the assertion that only users who possess
the effective edit permission at the time of the request may invoke those two views. We’ve granted the
group:editors principal the edit permission at the root model via its ACL, so only the a user
whom is a member of the group named group:editors will able to invoke the views associated with
the add_page or edit_page routes.

Viewing Your Changes

When we’re done configuring a root factory, adding an authorization policy, and adding views, your
application’s __init__.py will look like this:

1 from pyramid.config import Configurator
2 from pyramid.authentication import AuthTktAuthenticationPolicy
3 from pyramid.authorization import ACLAuthorizationPolicy
4

5 from sqlalchemy import engine_from_config
6

414

34.6. ADDING AUTHORIZATION

7 from tutorial.models import initialize_sql
8 from tutorial.security import groupfinder
9

10 def main(global_config, **settings):
11 """ This function returns a WSGI application.
12 """
13 engine = engine_from_config(settings, ’sqlalchemy.’)
14 initialize_sql(engine)
15 authn_policy = AuthTktAuthenticationPolicy(
16 ’sosecret’, callback=groupfinder)
17 authz_policy = ACLAuthorizationPolicy()
18 config = Configurator(settings=settings,
19 root_factory=’tutorial.models.RootFactory’,
20 authentication_policy=authn_policy,
21 authorization_policy=authz_policy)
22 config.add_static_view(’static’, ’tutorial:static’, cache_max_age=3600)
23

24 config.add_route(’view_wiki’, ’/’)
25 config.add_route(’login’, ’/login’)
26 config.add_route(’logout’, ’/logout’)
27 config.add_route(’view_page’, ’/{pagename}’)
28 config.add_route(’add_page’, ’/add_page/{pagename}’)
29 config.add_route(’edit_page’, ’/{pagename}/edit_page’)
30

31 config.add_view(’tutorial.views.view_wiki’, route_name=’view_wiki’)
32 config.add_view(’tutorial.login.login’, route_name=’login’,
33 renderer=’tutorial:templates/login.pt’)
34 config.add_view(’tutorial.login.logout’, route_name=’logout’)
35 config.add_view(’tutorial.views.view_page’, route_name=’view_page’,
36 renderer=’tutorial:templates/view.pt’)
37 config.add_view(’tutorial.views.add_page’, route_name=’add_page’,
38 renderer=’tutorial:templates/edit.pt’, permission=’edit’)
39 config.add_view(’tutorial.views.edit_page’, route_name=’edit_page’,
40 renderer=’tutorial:templates/edit.pt’, permission=’edit’)
41 config.add_view(’tutorial.login.login’,
42 context=’pyramid.httpexceptions.HTTPForbidden’,
43 renderer=’tutorial:templates/login.pt’)
44 return config.make_wsgi_app()

34.6.2 Adding security.py

Add a security.py module within your package (in the same directory as __init__.py,
views.py, etc.) with the following content:

415

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

1 USERS = {’editor’:’editor’,
2 ’viewer’:’viewer’}
3 GROUPS = {’editor’:[’group:editors’]}
4

5 def groupfinder(userid, request):
6 if userid in USERS:
7 return GROUPS.get(userid, [])

The groupfinder function defined here is an authentication policy “callback”; it is a callable that
accepts a userid and a request. If the userid exists in the system, the callback will return a sequence of
group identifiers (or an empty sequence if the user isn’t a member of any groups). If the userid does
not exist in the system, the callback will return None. In a production system, user and group data will
most often come from a database, but here we use “dummy” data to represent user and groups sources.
Note that the editor user is a member of the group:editors group in our dummy group data (the
GROUPS data structure).

We’ve given the editor user membership to the group:editors by mapping him to this group
in the GROUPS data structure (GROUPS = {’editor’:[’group:editors’]}). Since the
groupfinder function consults the GROUPS data structure, this will mean that, as a result of the
ACL attached to the root returned by the root factory, and the permission associated with the add_page
and edit_page views, the editor user should be able to add and edit pages.

34.6.3 Adding Login and Logout Views

We’ll add a login view callable which renders a login form and processes the post from the login form,
checking credentials.

We’ll also add a logout view callable to our application and provide a link to it. This view will clear
the credentials of the logged in user and redirect back to the front page.

We’ll add a different file (for presentation convenience) to add login and the logout view callables. Add
a file named login.py to your application (in the same directory as views.py) with the following
content:

1 from pyramid.httpexceptions import HTTPFound
2 from pyramid.security import remember
3 from pyramid.security import forget
4

5 from tutorial.security import USERS
6

7 def login(request):

416

34.6. ADDING AUTHORIZATION

8 login_url = request.route_url(’login’)
9 referrer = request.url

10 if referrer == login_url:
11 referrer = ’/’ # never use the login form itself as came_from
12 came_from = request.params.get(’came_from’, referrer)
13 message = ’’
14 login = ’’
15 password = ’’
16 if ’form.submitted’ in request.params:
17 login = request.params[’login’]
18 password = request.params[’password’]
19 if USERS.get(login) == password:
20 headers = remember(request, login)
21 return HTTPFound(location = came_from,
22 headers = headers)
23 message = ’Failed login’
24

25 return dict(
26 message = message,
27 url = request.application_url + ’/login’,
28 came_from = came_from,
29 login = login,
30 password = password,
31)
32

33 def logout(request):
34 headers = forget(request)
35 return HTTPFound(location = request.route_url(’view_wiki’),
36 headers = headers)

34.6.4 Changing Existing Views

Then we need to change each of our view_page, edit_page and add_page views in views.py
to pass a “logged in” parameter to its template. We’ll add something like this to each view body:

1 from pyramid.security import authenticated_userid
2 logged_in = authenticated_userid(request)

We’ll then change the return value of these views to pass the resulting ‘logged_in‘ value to the template,
e.g.:

417

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

1 return dict(page = page,
2 content = content,
3 logged_in = logged_in,
4 edit_url = edit_url)

34.6.5 Adding the login.pt Template

Add a login.pt template to your templates directory. It’s referred to within the login view we just
added to login.py.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
xmlns:tal="http://xml.zope.org/namespaces/tal">

<head>
<title>Login - Pyramid tutorial wiki (based on TurboGears

20-Minute Wiki)</title>
<meta http-equiv="Content-Type" content="text/html;charset=UTF-8"/>
<meta name="keywords" content="python web application" />
<meta name="description" content="pyramid web application" />
<link rel="shortcut icon"

href="${request.static_url(’tutorial:static/favicon.ico’)}" />
<link rel="stylesheet"

href="${request.static_url(’tutorial:static/pylons.css’)}"
type="text/css" media="screen" charset="utf-8" />

<!--[if lte IE 6]>
<link rel="stylesheet"

href="${request.static_url(’tutorial:static/ie6.css’)}"
type="text/css" media="screen" charset="utf-8" />

<![endif]-->
</head>
<body>
<div id="wrap">

<div id="top-small">
<div class="top-small align-center">
<div>

<img width="220" height="50" alt="pyramid"
src="${request.static_url(’tutorial:static/pyramid-small.png’)}" />
</div>

</div>
</div>
<div id="middle">

<div class="middle align-right">

418

34.6. ADDING AUTHORIZATION

<div id="left" class="app-welcome align-left">
Login

</div>
<div id="right" class="app-welcome align-right"></div>

</div>
</div>
<div id="bottom">
<div class="bottom">

<form action="${url}" method="post">
<input type="hidden" name="came_from" value="${came_from}"/>
<input type="text" name="login" value="${login}"/>

<input type="password" name="password"

value="${password}"/>

<input type="submit" name="form.submitted" value="Log In"/>

</form>
</div>

</div>
</div>
<div id="footer">

<div class="footer"
>© Copyright 2008-2011, Agendaless Consulting.</div>

</div>
</body>
</html>

34.6.6 Change view.pt and edit.pt

We’ll also need to change our edit.pt and view.pt templates to display a “Logout” link if someone
is logged in. This link will invoke the logout view.

To do so we’ll add this to both templates within the <div id="right" class="app-welcome
align-right"> div:

Logout

34.6.7 Seeing Our Changes To views.py and our Templates

Our views.py module will look something like this when we’re done:

419

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

1 import re
2

3 from docutils.core import publish_parts
4

5 from pyramid.httpexceptions import HTTPFound, HTTPNotFound
6 from pyramid.security import authenticated_userid
7

8 from tutorial.models import DBSession
9 from tutorial.models import Page

10

11 # regular expression used to find WikiWords
12 wikiwords = re.compile(r"\b([A-Z]\w+[A-Z]+\w+)")
13

14 def view_wiki(request):
15 return HTTPFound(location = request.route_url(’view_page’,
16 pagename=’FrontPage’))
17

18 def view_page(request):
19 pagename = request.matchdict[’pagename’]
20 session = DBSession()
21 page = session.query(Page).filter_by(name=pagename).first()
22 if page is None:
23 return HTTPNotFound(’No such page’)
24

25 def check(match):
26 word = match.group(1)
27 exists = session.query(Page).filter_by(name=word).all()
28 if exists:
29 view_url = request.route_url(’view_page’, pagename=word)
30 return ’%s’ % (view_url, word)
31 else:
32 add_url = request.route_url(’add_page’, pagename=word)
33 return ’%s’ % (add_url, word)
34

35 content = publish_parts(page.data, writer_name=’html’)[’html_body’]
36 content = wikiwords.sub(check, content)
37 edit_url = request.route_url(’edit_page’, pagename=pagename)
38 logged_in = authenticated_userid(request)
39 return dict(page=page, content=content, edit_url=edit_url,
40 logged_in=logged_in)
41

42 def add_page(request):
43 name = request.matchdict[’pagename’]
44 if ’form.submitted’ in request.params:
45 session = DBSession()
46 body = request.params[’body’]

420

34.6. ADDING AUTHORIZATION

47 page = Page(name, body)
48 session.add(page)
49 return HTTPFound(location = request.route_url(’view_page’,
50 pagename=name))
51 save_url = request.route_url(’add_page’, pagename=name)
52 page = Page(’’, ’’)
53 logged_in = authenticated_userid(request)
54 return dict(page=page, save_url=save_url, logged_in=logged_in)
55

56 def edit_page(request):
57 name = request.matchdict[’pagename’]
58 session = DBSession()
59 page = session.query(Page).filter_by(name=name).one()
60 if ’form.submitted’ in request.params:
61 page.data = request.params[’body’]
62 session.add(page)
63 return HTTPFound(location = request.route_url(’view_page’,
64 pagename=name))
65

66 logged_in = authenticated_userid(request)
67 return dict(
68 page=page,
69 save_url = request.route_url(’edit_page’, pagename=name),
70 logged_in = logged_in,
71)

Our edit.pt template will look something like this when we’re done:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
xmlns:tal="http://xml.zope.org/namespaces/tal">

<head>
<title>${page.name} - Pyramid tutorial wiki (based on

TurboGears 20-Minute Wiki)</title>
<meta http-equiv="Content-Type" content="text/html;charset=UTF-8"/>
<meta name="keywords" content="python web application" />
<meta name="description" content="pyramid web application" />
<link rel="shortcut icon"

href="${request.static_url(’tutorial:static/favicon.ico’)}" />
<link rel="stylesheet"

href="${request.static_url(’tutorial:static/pylons.css’)}"
type="text/css" media="screen" charset="utf-8" />

<!--[if lte IE 6]>
<link rel="stylesheet"

href="${request.static_url(’tutorial:static/ie6.css’)}"

421

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

type="text/css" media="screen" charset="utf-8" />
<![endif]-->

</head>
<body>
<div id="wrap">

<div id="top-small">
<div class="top-small align-center">
<div>

<img width="220" height="50" alt="pyramid"
src="${request.static_url(’tutorial:static/pyramid-small.png’)}" />
</div>

</div>
</div>
<div id="middle">

<div class="middle align-right">
<div id="left" class="app-welcome align-left">

Editing Page Name
Goes Here

You can return to the
FrontPage.

</div>
<div id="right" class="app-welcome align-right">

Logout

</div>

</div>
</div>
<div id="bottom">

<div class="bottom">
<form action="${save_url}" method="post">

<textarea name="body" tal:content="page.data" rows="10"
cols="60"/>

<input type="submit" name="form.submitted" value="Save"/>
</form>

</div>
</div>

</div>
<div id="footer">

<div class="footer"
>© Copyright 2008-2011, Agendaless Consulting.</div>

</div>
</body>
</html>

Our view.pt template will look something like this when we’re done:

422

34.6. ADDING AUTHORIZATION

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
xmlns:tal="http://xml.zope.org/namespaces/tal">

<head>
<title>${page.name} - Pyramid tutorial wiki (based on

TurboGears 20-Minute Wiki)</title>
<meta http-equiv="Content-Type" content="text/html;charset=UTF-8"/>
<meta name="keywords" content="python web application" />
<meta name="description" content="pyramid web application" />
<link rel="shortcut icon"

href="${request.static_url(’tutorial:static/favicon.ico’)}" />
<link rel="stylesheet"

href="${request.static_url(’tutorial:static/pylons.css’)}"
type="text/css" media="screen" charset="utf-8" />

<!--[if lte IE 6]>
<link rel="stylesheet"

href="${request.static_url(’tutorial:static/ie6.css’)}"
type="text/css" media="screen" charset="utf-8" />

<![endif]-->
</head>
<body>

<div id="wrap">
<div id="top-small">
<div class="top-small align-center">

<div>
<img width="220" height="50" alt="pyramid"

src="${request.static_url(’tutorial:static/pyramid-small.png’)}" />
</div>

</div>
</div>
<div id="middle">
<div class="middle align-right">

<div id="left" class="app-welcome align-left">
Viewing Page Name
Goes Here

You can return to the
FrontPage.

</div>
<div id="right" class="app-welcome align-right">

Logout

</div>

</div>
</div>

423

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

<div id="bottom">
<div class="bottom">
<div tal:replace="structure content">

Page text goes here.
</div>
<p>

<a tal:attributes="href edit_url" href="">
Edit this page

</p>

</div>
</div>

</div>
<div id="footer">

<div class="footer"
>© Copyright 2008-2011, Agendaless Consulting.</div>

</div>
</body>
</html>

34.6.8 Viewing the Application in a Browser

We can finally examine our application in a browser. The views we’ll try are as follows:

• Visiting http://localhost:6543/ in a browser invokes the view_wiki view. This always
redirects to the view_page view of the FrontPage page object. It is executable by any user.

• Visiting http://localhost:6543/FrontPage in a browser invokes the view_page view
of the FrontPage page object.

• Visiting http://localhost:6543/FrontPage/edit_page in a browser invokes the edit
view for the FrontPage object. It is executable by only the editor user. If a different user (or the
anonymous user) invokes it, a login form will be displayed. Supplying the credentials with the
username editor, password editor will display the edit page form.

• Visiting http://localhost:6543/add_page/SomePageName in a browser invokes the
add view for a page. It is executable by only the editor user. If a different user (or the anony-
mous user) invokes it, a login form will be displayed. Supplying the credentials with the username
editor, password editor will display the edit page form.

• After logging in (as a result of hitting an edit or add page and submitting the login form with the
editor credentials), we’ll see a Logout link in the upper right hand corner. When we click it,
we’re logged out, and redirected back to the front page.

424

34.7. ADDING TESTS

34.7 Adding Tests

We will now add tests for the models and the views and a few functional tests in the tests.py. Tests
ensure that an application works, and that it continues to work after some changes are made in the future.

34.7.1 Testing the Models

We write a test class for the model class Page and another test class for the initialize_sql function.

To do so, we’ll retain the tutorial.tests.ViewTests class provided as a result of
the pyramid_routesalchemy project generator. We’ll add two test classes: one for
the Page model named PageModelTests, one for the initialize_sql function named
InitializeSqlTests.

34.7.2 Testing the Views

We’ll modify our tests.py file, adding tests for each view function we added above. As a re-
sult, we’ll delete the ViewTests test in the file, and add four other test classes: ViewWikiTests,
ViewPageTests, AddPageTests, and EditPageTests. These test the view_wiki,
view_page, add_page, and edit_page views respectively.

34.7.3 Functional tests

We test the whole application, covering security aspects that are not tested in the unit tests, like logging
in, logging out, checking that the viewer user cannot add or edit pages, but the editor user can, and
so on.

34.7.4 Viewing the results of all our edits to tests.py

Once we’re done with the tests.py module, it will look a lot like the below:

425

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

1 import unittest
2

3 from pyramid import testing
4

5

6 def _initTestingDB():
7 from tutorial.models import DBSession
8 from tutorial.models import Base
9 from sqlalchemy import create_engine

10 engine = create_engine(’sqlite:///:memory:’)
11 DBSession.configure(bind=engine)
12 Base.metadata.bind = engine
13 Base.metadata.create_all(engine)
14 return DBSession
15

16 def _registerRoutes(config):
17 config.add_route(’view_page’, ’{pagename}’)
18 config.add_route(’edit_page’, ’{pagename}/edit_page’)
19 config.add_route(’add_page’, ’add_page/{pagename}’)
20

21

22 class PageModelTests(unittest.TestCase):
23

24 def setUp(self):
25 self.session = _initTestingDB()
26

27 def tearDown(self):
28 self.session.remove()
29

30 def _getTargetClass(self):
31 from tutorial.models import Page
32 return Page
33

34 def _makeOne(self, name=’SomeName’, data=’some data’):
35 return self._getTargetClass()(name, data)
36

37 def test_constructor(self):
38 instance = self._makeOne()
39 self.assertEqual(instance.name, ’SomeName’)
40 self.assertEqual(instance.data, ’some data’)
41

42 class InitializeSqlTests(unittest.TestCase):
43

44 def setUp(self):
45 from tutorial.models import DBSession
46 DBSession.remove()

426

34.7. ADDING TESTS

47

48 def tearDown(self):
49 from tutorial.models import DBSession
50 DBSession.remove()
51

52 def _callFUT(self, engine):
53 from tutorial.models import initialize_sql
54 return initialize_sql(engine)
55

56 def test_it(self):
57 from sqlalchemy import create_engine
58 engine = create_engine(’sqlite:///:memory:’)
59 self._callFUT(engine)
60 from tutorial.models import DBSession, Page
61 self.assertEqual(DBSession.query(Page).one().data,
62 ’This is the front page’)
63

64 class ViewWikiTests(unittest.TestCase):
65 def setUp(self):
66 self.config = testing.setUp()
67

68 def tearDown(self):
69 testing.tearDown()
70

71 def _callFUT(self, request):
72 from tutorial.views import view_wiki
73 return view_wiki(request)
74

75 def test_it(self):
76 _registerRoutes(self.config)
77 request = testing.DummyRequest()
78 response = self._callFUT(request)
79 self.assertEqual(response.location, ’http://example.com/FrontPage’)
80

81 class ViewPageTests(unittest.TestCase):
82 def setUp(self):
83 self.session = _initTestingDB()
84 self.config = testing.setUp()
85

86 def tearDown(self):
87 self.session.remove()
88 testing.tearDown()
89

90 def _callFUT(self, request):
91 from tutorial.views import view_page
92 return view_page(request)

427

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

93

94 def test_it(self):
95 from tutorial.models import Page
96 request = testing.DummyRequest()
97 request.matchdict[’pagename’] = ’IDoExist’
98 page = Page(’IDoExist’, ’Hello CruelWorld IDoExist’)
99 self.session.add(page)

100 _registerRoutes(self.config)
101 info = self._callFUT(request)
102 self.assertEqual(info[’page’], page)
103 self.assertEqual(
104 info[’content’],
105 ’<div class="document">\n’
106 ’<p>Hello ’
107 ’CruelWorld ’
108 ’’
109 ’IDoExist’
110 ’</p>\n</div>\n’)
111 self.assertEqual(info[’edit_url’],
112 ’http://example.com/IDoExist/edit_page’)
113

114 class AddPageTests(unittest.TestCase):
115 def setUp(self):
116 self.session = _initTestingDB()
117 self.config = testing.setUp()
118

119 def tearDown(self):
120 self.session.remove()
121 testing.tearDown()
122

123 def _callFUT(self, request):
124 from tutorial.views import add_page
125 return add_page(request)
126

127 def test_it_notsubmitted(self):
128 _registerRoutes(self.config)
129 request = testing.DummyRequest()
130 request.matchdict = {’pagename’:’AnotherPage’}
131 info = self._callFUT(request)
132 self.assertEqual(info[’page’].data,’’)
133 self.assertEqual(info[’save_url’],
134 ’http://example.com/add_page/AnotherPage’)
135

136 def test_it_submitted(self):
137 from tutorial.models import Page
138 _registerRoutes(self.config)

428

34.7. ADDING TESTS

139 request = testing.DummyRequest({’form.submitted’:True,
140 ’body’:’Hello yo!’})
141 request.matchdict = {’pagename’:’AnotherPage’}
142 self._callFUT(request)
143 page = self.session.query(Page).filter_by(name=’AnotherPage’).one()
144 self.assertEqual(page.data, ’Hello yo!’)
145

146 class EditPageTests(unittest.TestCase):
147 def setUp(self):
148 self.session = _initTestingDB()
149 self.config = testing.setUp()
150

151 def tearDown(self):
152 self.session.remove()
153 testing.tearDown()
154

155 def _callFUT(self, request):
156 from tutorial.views import edit_page
157 return edit_page(request)
158

159 def test_it_notsubmitted(self):
160 from tutorial.models import Page
161 _registerRoutes(self.config)
162 request = testing.DummyRequest()
163 request.matchdict = {’pagename’:’abc’}
164 page = Page(’abc’, ’hello’)
165 self.session.add(page)
166 info = self._callFUT(request)
167 self.assertEqual(info[’page’], page)
168 self.assertEqual(info[’save_url’],
169 ’http://example.com/abc/edit_page’)
170

171 def test_it_submitted(self):
172 from tutorial.models import Page
173 _registerRoutes(self.config)
174 request = testing.DummyRequest({’form.submitted’:True,
175 ’body’:’Hello yo!’})
176 request.matchdict = {’pagename’:’abc’}
177 page = Page(’abc’, ’hello’)
178 self.session.add(page)
179 response = self._callFUT(request)
180 self.assertEqual(response.location, ’http://example.com/abc’)
181 self.assertEqual(page.data, ’Hello yo!’)
182

183 class FunctionalTests(unittest.TestCase):
184

429

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

185 viewer_login = ’/login?login=viewer&password=viewer’ \
186 ’&came_from=FrontPage&form.submitted=Login’
187 viewer_wrong_login = ’/login?login=viewer&password=incorrect’ \
188 ’&came_from=FrontPage&form.submitted=Login’
189 editor_login = ’/login?login=editor&password=editor’ \
190 ’&came_from=FrontPage&form.submitted=Login’
191

192 def setUp(self):
193 from tutorial import main
194 settings = { ’sqlalchemy.url’: ’sqlite:///:memory:’}
195 app = main({}, **settings)
196 from webtest import TestApp
197 self.testapp = TestApp(app)
198

199 def tearDown(self):
200 del self.testapp
201 from tutorial.models import DBSession
202 DBSession.remove()
203

204 def test_root(self):
205 res = self.testapp.get(’/’, status=302)
206 self.assertEqual(res.location, ’http://localhost/FrontPage’)
207

208 def test_FrontPage(self):
209 res = self.testapp.get(’/FrontPage’, status=200)
210 self.assertTrue(’FrontPage’ in res.body)
211

212 def test_unexisting_page(self):
213 self.testapp.get(’/SomePage’, status=404)
214

215 def test_successful_log_in(self):
216 res = self.testapp.get(self.viewer_login, status=302)
217 self.assertEqual(res.location, ’http://localhost/FrontPage’)
218

219 def test_failed_log_in(self):
220 res = self.testapp.get(self.viewer_wrong_login, status=200)
221 self.assertTrue(’login’ in res.body)
222

223 def test_logout_link_present_when_logged_in(self):
224 self.testapp.get(self.viewer_login, status=302)
225 res = self.testapp.get(’/FrontPage’, status=200)
226 self.assertTrue(’Logout’ in res.body)
227

228 def test_logout_link_not_present_after_logged_out(self):
229 self.testapp.get(self.viewer_login, status=302)
230 self.testapp.get(’/FrontPage’, status=200)

430

34.7. ADDING TESTS

231 res = self.testapp.get(’/logout’, status=302)
232 self.assertTrue(’Logout’ not in res.body)
233

234 def test_anonymous_user_cannot_edit(self):
235 res = self.testapp.get(’/FrontPage/edit_page’, status=200)
236 self.assertTrue(’Login’ in res.body)
237

238 def test_anonymous_user_cannot_add(self):
239 res = self.testapp.get(’/add_page/NewPage’, status=200)
240 self.assertTrue(’Login’ in res.body)
241

242 def test_viewer_user_cannot_edit(self):
243 self.testapp.get(self.viewer_login, status=302)
244 res = self.testapp.get(’/FrontPage/edit_page’, status=200)
245 self.assertTrue(’Login’ in res.body)
246

247 def test_viewer_user_cannot_add(self):
248 self.testapp.get(self.viewer_login, status=302)
249 res = self.testapp.get(’/add_page/NewPage’, status=200)
250 self.assertTrue(’Login’ in res.body)
251

252 def test_editors_member_user_can_edit(self):
253 self.testapp.get(self.editor_login, status=302)
254 res = self.testapp.get(’/FrontPage/edit_page’, status=200)
255 self.assertTrue(’Editing’ in res.body)
256

257 def test_editors_member_user_can_add(self):
258 self.testapp.get(self.editor_login, status=302)
259 res = self.testapp.get(’/add_page/NewPage’, status=200)
260 self.assertTrue(’Editing’ in res.body)
261

262 def test_editors_member_user_can_view(self):
263 self.testapp.get(self.editor_login, status=302)
264 res = self.testapp.get(’/FrontPage’, status=200)
265 self.assertTrue(’FrontPage’ in res.body)

34.7.5 Running the Tests

We can run these tests by using setup.py test in the same way we did in Running the Tests. How-
ever, first we must edit our setup.py to include a dependency on WebTest, which we’ve used in our
tests.py. Change the requires list in setup.py to include WebTest.

431

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

1 requires = [
2 ’pyramid’,
3 ’SQLAlchemy’,
4 ’transaction’,
5 ’pyramid_tm’,
6 ’pyramid_debugtoolbar’,
7 ’zope.sqlalchemy’,
8 ’docutils’,
9 ’WebTest’, # add this

10]

After we’ve added a dependency on WebTest in setup.py, we need to rerun setup.py develop to
get WebTest installed into our virtualenv. Assuming our shell’s current working directory is the “tutorial”
distribution directory:

On UNIX:

$../bin/python setup.py develop

On Windows:

c:\pyramidtut\tutorial> ..\Scripts\python setup.py develop

Once that command has completed successfully, we can run the tests themselves:

On UNIX:

$../bin/python setup.py test -q

On Windows:

c:\pyramidtut\tutorial> ..\Scripts\python setup.py test -q

The expected result looks something like:

......................
--
Ran 22 tests in 2.700s

OK

432

34.8. DISTRIBUTING YOUR APPLICATION

34.8 Distributing Your Application

Once your application works properly, you can create a “tarball” from it by using the setup.py sdist
command. The following commands assume your current working directory is the tutorial package
we’ve created and that the parent directory of the tutorial package is a virtualenv representing a
Pyramid environment.

On UNIX:

$../bin/python setup.py sdist

On Windows:

c:\pyramidtut> ..\Scripts\python setup.py sdist

The output of such a command will be something like:

running sdist
... more output ...
creating dist
tar -cf dist/tutorial-0.1.tar tutorial-0.1
gzip -f9 dist/tutorial-0.1.tar
removing ’tutorial-0.1’ (and everything under it)

Note that this command creates a tarball in the “dist” subdirectory named tutorial-0.1.tar.gz.
You can send this file to your friends to show them your cool new application. They should be able to
install it by pointing the easy_install command directly at it. Or you can upload it to PyPI and share
it with the rest of the world, where it can be downloaded via easy_install remotely like any other
package people download from PyPI.

433

http://pypi.python.org

34. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

434

CHAPTER

THIRTYFIVE

CONVERTING A REPOZE.BFG
APPLICATION TO PYRAMID

Prior iterations of Pyramid were released as a package named repoze.bfg. repoze.bfg users are
encouraged to upgrade their deployments to Pyramid, as, after the first final release of Pyramid, further
feature development on repoze.bfg will cease.

Most existing repoze.bfg applications can be converted to a Pyramid application in a completely
automated fashion. However, if your application depends on packages which are not “core” parts of
repoze.bfg but which nonetheless have repoze.bfg in their names (e.g. repoze.bfg.skins,
repoze.bfg.traversalwrapper, repoze.bfg.jinja2), you will need to find an analogue
for each. For example, by the time you read this, there will be a pyramid_jinja2 package, which can
be used instead of repoze.bfg.jinja2. If an analogue does not seem to exist for a repoze.bfg
add-on package that your application uses, please email the Pylons-devel maillist; we’ll convert the pack-
age to a Pyramid analogue for you.

Here’s how to convert a repoze.bfg application to a Pyramid application:

1. Ensure that your application works under repoze.bfg version 1.3 or better. See
http://docs.repoze.org/bfg/1.3/narr/install.html for repoze.bfg 1.3 installation instructions. If
your application has an automated test suite, run it while your application is using repoze.bfg
1.3+. Otherwise, test it manually. It is only safe to proceed to the next step once your application
works under repoze.bfg 1.3+.

If your application has a proper set of dependencies, and a standard automated test suite, you might
test your repoze.bfg application against repoze.bfg 1.3 like so:

435

http://groups.google.com/group/pylons-devel
http://docs.repoze.org/bfg/1.3/narr/install.html

35. CONVERTING A REPOZE.BFG APPLICATION TO PYRAMID

$ bfgenv/bin/python setup.py test

bfgenv above will be the virtualenv into which you’ve installed repoze.bfg 1.3.

2. Install Pyramid into a separate virtualenv as per the instructions in Installing Pyramid. The Pyramid
virtualenv should be separate from the one you’ve used to install repoze.bfg. A quick way to
do this:

$ cd ~
$ virtualenv --no-site-packages pyramidenv
$ cd pyramidenv
$ bin/easy_install pyramid

3. Put a copy of your repoze.bfg application into a temporary location (perhaps by checking a
fresh copy of the application out of a version control repository). For example:

$ cd /tmp
$ svn co http://my.server/my/bfg/application/trunk bfgapp

4. Use the bfg2pyramid script present in the bin directory of the Pyramid virtualenv to con-
vert all repoze.bfg Python import statements into compatible Pyramid import statements.
bfg2pyramid will also fix ZCML directive usages of common repoze.bfg directives. You
invoke bfg2pyramid by passing it the path of the copy of your application. The path passed
should contain a “setup.py” file, representing your repoze.bfg application’s setup script.
bfg2pyramid will change the copy of the application in place.

$ ~/pyramidenv/bfg2pyramid /tmp/bfgapp

bfg2pyramid will convert the following repoze.bfg application aspects to Pyramid compat-
ible analogues:

• Python import statements naming repoze.bfg APIs will be converted to Pyramid com-
patible import statements. Every Python file beneath the top-level path will be visited and
converted recursively, except Python files which live in directories which start with a . (dot).

• Each ZCML file found (recursively) within the path will have the default xmlns attribute at-
tached to the configure tag changed from http://namespaces.repoze.org/bfg
to http://pylonshq.com/pyramid. Every ZCML file beneath the top-level path (files
ending with .zcml) will be visited and converted recursively, except ZCML files which live
in directories which start with a . (dot).

436

• ZCML files which contain directives that have attributes which name
a repoze.bfg API module or attribute of an API module (e.g.
context="repoze.bfg.exceptions.NotFound") will be converted to Pyramid
compatible ZCML attributes (e.g. context="pyramid.exceptions.NotFound).
Every ZCML file beneath the top-level path (files ending with .zcml) will be visited and
converted recursively, except ZCML files which live in directories which start with a . (dot).

5. Edit the setup.py file of the application you’ve just converted (if you’ve been using the example
paths, this will be /tmp/bfgapp/setup.py) to depend on the pyramid distribution instead
the of repoze.bfg distribution in its install_requires list. If you used a scaffold to create
the repoze.bfg application, you can do so by changing the requires line near the top of the
setup.py file. The original may look like this:

requires = [’repoze.bfg’, ... other dependencies ...]

Edit the setup.py so it has:

requires = [’pyramid’, ... other dependencies ...]

All other install-requires and tests-requires dependencies save for the one on repoze.bfg can
remain the same.

6. Convert any install_requires dependencies your application has on other add-on pack-
ages which have repoze.bfg in their names to Pyramid compatible analogues (e.g.
repoze.bfg.jinja2 should be replaced with pyramid_jinja2). You may need to ad-
just configuration options and/or imports in your repoze.bfg application after replacing these
add-ons. Read the documentation of the Pyramid add-on package for information.

7. Only if you use ZCML and add-ons which use ZCML: The default xmlns of the configure
tag in ZCML has changed. The bfg2pyramid script effects the default namespace change (it
changes the configure tag default xmlns from http://namespaces.repoze.org/bfg
to http://pylonshq.com/pyramid).

This means that uses of add-ons which define ZCML directives in the
http://namespaces.repoze.org/bfg namespace will begin to “fail” (they’re ac-
tually not really failing, but your ZCML assumes that they will always be used within
a configure tag which names the http://namespaces.repoze.org/bfg
namespace as its default xmlns). Symptom: when you attempt to start the appli-
cation, an error such as ConfigurationError: (’Unknown directive’,
u’http://namespaces.repoze.org/bfg’, u’workflow’) is printed to
the console and the application fails to start. In such a case, either add an
xmlns="http://namespaces.repoze.org/bfg" attribute to each tag which causes a
failure, or define a namespace alias in the configure tag and prefix each failing tag. For example,
change this “failing” tag instance:

437

35. CONVERTING A REPOZE.BFG APPLICATION TO PYRAMID

<configure xmlns="http://pylonshq.com/pyramid">
<failingtag attr="foo"/>

</configure>

To this, which will begin to succeed:

<configure xmlns="http://pylonshq.com/pyramid"
xmlns:bfg="http://namespaces.repoze.org/bfg">

<bfg:failingtag attr="foo"/>
</configure>

You will also need to add the pyramid_zcml package to your setup.py
install_requires list. In Pyramid, ZCML configuration became an optional add-on
supported by the pyramid_zcml package.

8. Retest your application using Pyramid. This might be as easy as:

$ cd /tmp/bfgapp
$ ~/pyramidenv/bin/python setup.py test

9. Fix any test failures.

10. Fix any code which generates deprecation warnings.

11. Start using the converted version of your application. Celebrate.

Two terminological changes have been made to Pyramid which make its documentation and newer APIs
different than those of repoze.bfg. The concept that BFG called model is called resource in Pyra-
mid and the concept that BFG called resource is called asset in Pyramid. Various APIs have changed
as a result (although all have backwards compatible shims). Additionally, the environment variables that
influenced server behavior which used to be prefixed with BFG_ (such as BFG_DEBUG_NOTFOUND)
must now be prefixed with PYRAMID_.

438

CHAPTER

THIRTYSIX

RUNNING PYRAMID ON
GOOGLE’S APP ENGINE

It is possible to run a Pyramid application on Google’s App Engine. Content from this tutorial was
contributed by YoungKing, based on the “appengine-monkey” tutorial for Pylons. This tutorial is written
in terms of using the command line on a UNIX system; it should be possible to perform similar actions
on a Windows system.

1. Download Google’s App Engine SDK and install it on your system.

2. Use Subversion to check out the source code for appengine-monkey.

$ svn co http://appengine-monkey.googlecode.com/svn/trunk/ \
appengine-monkey

3. Use appengine_homedir.py script in appengine-monkey to create a virtualenv for your
application.

$ export GAE_PATH=/usr/local/google_appengine
$ python2.5 /path/to/appengine-monkey/appengine-homedir.py --gae \
$GAE_PATH pyramidapp

Note that $GAE_PATH should be the path where you have unpacked the App Engine SDK. (On
Mac OS X at least, /usr/local/google_appengine is indeed where the installer puts it).

This will set up an environment in pyramidapp/, with some tools installed in
pyramidapp/bin. There will also be a directory pyramidapp/app/ which is the directory
you will upload to appengine.

4. Install Pyramid into the virtualenv

439

http://code.google.com/appengine/
http://code.google.com/p/appengine-monkey/wiki/Pylons
http://code.google.com/appengine/downloads.html

36. RUNNING PYRAMID ON GOOGLE’S APP ENGINE

$ cd pyramidapp/
$ bin/easy_install pyramid

This will install Pyramid in the environment.

5. Create your application

We’ll use the standard way to create a Pyramid application, but we’ll have to move some files
around when we are done. The below commands assume your current working directory is the
pyramidapp virtualenv directory you created in the third step above:

$ cd app
$ rm -rf pyramidapp
$ bin/paster create -t pyramid_starter pyramidapp
$ mv pyramidapp aside
$ mv aside/pyramidapp .
$ rm -rf aside

6. Edit config.py

Edit the APP_NAME and APP_ARGS settings within config.py. The APP_NAME must be
pyramidapp:main, and the APP_ARGS must be ({},). Any other settings in config.py
should remain the same.

APP_NAME = ’pyramidapp:main’
APP_ARGS = ({},)

7. Edit runner.py

To prevent errors for import site, add this code stanza before import site in
app/runner.py:

import sys
sys.path = [path for path in sys.path if ’site-packages’ not in path]
import site

You will also need to comment out the line that starts with assert sys.path in the file.

comment the sys.path assertion out
assert sys.path[:len(cur_sys_path)] == cur_sys_path, (
"addsitedir() caused entries to be prepended to sys.path")

440

For GAE development environment 1.3.0 or better, you will also need the following somewhere
near the top of the runner.py file to fix a compatibility issue with appengine-monkey:

import os
os.mkdir = None

8. Run the application. dev_appserver.py is typically installed by the SDK in the global path
but you need to be sure to run it with Python 2.5 (or whatever version of Python your GAE SDK
expects).

1 $ cd ../..
2 $ python2.5 /usr/local/bin/dev_appserver.py pyramidapp/app/

Startup success looks something like this:

[chrism@vitaminf pyramid_gae]$ python2.5 \
/usr/local/bin/dev_appserver.py \
pyramidapp/app/

INFO 2009-05-03 22:23:13,887 appengine_rpc.py:157] # ... more...
Running application pyramidapp on port 8080: http://localhost:8080

You may need to run “Make Symlinks” from the Google App Engine Launcher GUI application if
your system doesn’t already have the dev_appserver.py script sitting around somewhere.

9. Hack on your pyramid application, using a normal run, debug, restart process. For tips on how to
use the pdb module within Google App Engine, see this blog post. In particular, you can create a
function like so and call it to drop your console into a pdb trace:

1 def set_trace():
2 import pdb, sys
3 debugger = pdb.Pdb(stdin=sys.__stdin__,
4 stdout=sys.__stdout__)
5 debugger.set_trace(sys._getframe().f_back)

10. Sign up for a GAE account and create an application. You’ll need a mobile phone to accept an SMS
in order to receive authorization.

11. Edit the application’s ID in app.yaml to match the application name you created during GAE
account setup.

441

http://jjinux.blogspot.com/2008/05/python-debugging-google-app-engine-apps.html
http://code.google.com/appengine/

36. RUNNING PYRAMID ON GOOGLE’S APP ENGINE

application: mycoolpyramidapp

12. Upload the application

$ python2.5 /usr/local/bin/appcfg.py update pyramidapp/app

You almost certainly won’t hit the 3000-file GAE file number limit when invoking this command.
If you do, however, it will look like so:

HTTPError: HTTP Error 400: Bad Request
Rolling back the update.
Error 400: --- begin server output ---
Max number of files and blobs is 3000.
--- end server output ---

If you do experience this error, you will be able to get around this by zipping libraries. You can use
pip to create zipfiles from packages. See Zipping Files Via Pip for more information about this.

A successful upload looks like so:

[chrism@vitaminf pyramidapp]$ python2.5 /usr/local/bin/appcfg.py \
update ../pyramidapp/app/

Scanning files on local disk.
Scanned 500 files.
... more output ...
Will check again in 16 seconds.
Checking if new version is ready to serve.
Closing update: new version is ready to start serving.
Uploading index definitions.

13. Visit http://<yourapp>.appspot.com in a browser.

36.1 Zipping Files Via Pip

If you hit the Google App Engine 3000-file limit, you may need to create zipfile archives out of some
distributions installed in your application’s virtualenv.

First, see which packages are available for zipping:

442

36.1. ZIPPING FILES VIA PIP

$ bin/pip zip -l

This shows your zipped packages (by default, none) and your unzipped packages. You can zip a package
like so:

$ bin/pip zip pytz-2009g-py2.5.egg

Note that it requires the whole egg file name. For a Pyramid app, the following packages are good
candidates to be zipped.

• Chameleon

• zope.i18n

Once the zipping procedure is finished you can try uploading again.

443

36. RUNNING PYRAMID ON GOOGLE’S APP ENGINE

444

CHAPTER

THIRTYSEVEN

RUNNING A PYRAMID
APPLICATION UNDER MOD_WSGI

mod_wsgi is an Apache module developed by Graham Dumpleton. It allows WSGI programs to be served
using the Apache web server.

This guide will outline broad steps that can be used to get a Pyramid application running under Apache via
mod_wsgi. This particular tutorial was developed under Apple’s Mac OS X platform (Snow Leopard,
on a 32-bit Mac), but the instructions should be largely the same for all systems, delta specific path
information for commands and files.

Unfortunately these instructions almost certainly won’t work for deploying a Pyramid application
on a Windows system using mod_wsgi. If you have experience with Pyramid and mod_wsgi
on Windows systems, please help us document this experience by submitting documentation to the
Pylons-devel maillist.

1. The tutorial assumes you have Apache already installed on your system. If you do not, install
Apache 2.X for your platform in whatever manner makes sense.

2. Once you have Apache installed, install mod_wsgi. Use the (excellent) installation instructions
for your platform into your system’s Apache installation.

3. Install virtualenv into the Python which mod_wsgi will run using the easy_install program.

$ sudo /usr/bin/easy_install-2.6 virtualenv

This command may need to be performed as the root user.

4. Create a virtualenv which we’ll use to install our application.

445

http://groups.google.com/group/pylons-devel
http://code.google.com/p/modwsgi/wiki/InstallationInstructions

37. RUNNING A PYRAMID APPLICATION UNDER MOD_WSGI

$ cd ~
$ mkdir modwsgi
$ cd modwsgi
$ /usr/local/bin/virtualenv --no-site-packages env

5. Install Pyramid into the newly created virtualenv:

$ cd ~/modwsgi/env
$ bin/easy_install pyramid

6. Create and install your Pyramid application. For the purposes of this tutorial, we’ll just be using
the pyramid_starter application as a baseline application. Substitute your existing Pyramid
application as necessary if you already have one.

$ cd ~/modwsgi/env
$ bin/paster create -t pyramid_starter myapp
$ cd myapp
$../bin/python setup.py install

7. Within the virtualenv directory (~/modwsgi/env), create a script named pyramid.wsgi. Give
it these contents:

from pyramid.paster import get_app
application = get_app(
’/Users/chrism/modwsgi/env/myapp/production.ini’, ’main’)

The first argument to get_app is the project Paste configuration file name. It’s best to use the
production.ini file provided by your scaffold, as it contains settings appropriate for produc-
tion. The second is the name of the section within the .ini file that should be loaded by mod_wsgi.
The assignment to the name application is important: mod_wsgi requires finding such an
assignment when it opens the file.

8. Make the pyramid.wsgi script executable.

$ cd ~/modwsgi/env
$ chmod 755 pyramid.wsgi

9. Edit your Apache configuration and add some stuff. I happened to create a file named
/etc/apache2/other/modwsgi.conf on my own system while installing Apache, so this
stuff went in there.

446

Use only 1 Python sub-interpreter. Multiple sub-interpreters
play badly with C extensions.
WSGIApplicationGroup %{GLOBAL}
WSGIPassAuthorization On
WSGIDaemonProcess pyramid user=chrism group=staff threads=4 \

python-path=/Users/chrism/modwsgi/env/lib/python2.6/site-packages
WSGIScriptAlias /myapp /Users/chrism/modwsgi/env/pyramid.wsgi

<Directory /Users/chrism/modwsgi/env>
WSGIProcessGroup pyramid
Order allow,deny
Allow from all

</Directory>

10. Restart Apache

$ sudo /usr/sbin/apachectl restart

11. Visit http://localhost/myapp in a browser. You should see the sample application ren-
dered in your browser.

mod_wsgi has many knobs and a great variety of deployment modes. This is just one representation of
how you might use it to serve up a Pyramid application. See the mod_wsgi configuration documentation
for more in-depth configuration information.

447

http://code.google.com/p/modwsgi/wiki/ConfigurationGuidelines

37. RUNNING A PYRAMID APPLICATION UNDER MOD_WSGI

448

Part III

API Reference

CHAPTER

THIRTYEIGHT

PYRAMID.AUTHORIZATION

class ACLAuthorizationPolicy
An authorization policy which consults an ACL object attached to a context to determine autho-
rization information about a principal or multiple principals. If the context is part of a lineage, the
context’s parents are consulted for ACL information too. The following is true about this security
policy.

•When checking whether the ‘current’ user is permitted (via the permits method), the se-
curity policy consults the context for an ACL first. If no ACL exists on the context, or
one does exist but the ACL does not explicitly allow or deny access for any of the effective
principals, consult the context’s parent ACL, and so on, until the lineage is exhausted or we
determine that the policy permits or denies.

During this processing, if any pyramid.security.Deny ACE is found
matching any principal in principals, stop processing by returning an
pyramid.security.ACLDenied instance (equals False) immediately. If any
pyramid.security.Allow ACE is found matching any principal, stop processing by
returning an pyramid.security.ACLAllowed instance (equals True) immediately.
If we exhaust the context’s lineage, and no ACE has explicitly permitted or denied access,
return an instance of pyramid.security.ACLDenied (equals False).

•When computing principals allowed by a permission via the
pyramid.security.principals_allowed_by_permission() method, we
compute the set of principals that are explicitly granted the permission in the provided
context. We do this by walking ‘up’ the object graph from the root to the context.
During this walking process, if we find an explicit pyramid.security.Allow
ACE for a principal that matches the permission, the principal is included in
the allow list. However, if later in the walking process that principal is mentioned

451

38. PYRAMID.AUTHORIZATION

in any pyramid.security.Deny ACE for the permission, the principal is re-
moved from the allow list. If a pyramid.security.Deny to the principal
pyramid.security.Everyone is encountered during the walking process that
matches the permission, the allow list is cleared for all principals encountered in previous
ACLs. The walking process ends after we’ve processed the any ACL directly attached to
context; a set of principals is returned.

Objects of this class implement the pyramid.interfaces.IAuthorizationPolicy in-
terface.

452

CHAPTER

THIRTYNINE

PYRAMID.AUTHENTICATION

39.1 Authentication Policies

class AuthTktAuthenticationPolicy(secret, callback=None, cookie_name=’auth_tkt’,
secure=False, include_ip=False, timeout=None,
reissue_time=None, max_age=None, path=’/’,
http_only=False, wild_domain=True, de-
bug=False)

A Pyramid authentication policy which obtains data from an paste.auth.auth_tkt cookie.

Constructor Arguments

secret

The secret (a string) used for auth_tkt cookie signing. Required.

callback

Default: None. A callback passed the userid and the request, expected to return None
if the userid doesn’t exist or a sequence of principal identifiers (possibly empty) if the
user does exist. If callback is None, the userid will be assumed to exist with no
principals. Optional.

cookie_name

Default: auth_tkt. The cookie name used (string). Optional.

453

39. PYRAMID.AUTHENTICATION

secure

Default: False. Only send the cookie back over a secure conn. Optional.

include_ip

Default: False. Make the requesting IP address part of the authentication data in the
cookie. Optional.

timeout

Default: None. Maximum number of seconds which a newly issued ticket will be
considered valid. After this amount of time, the ticket will expire (effectively logging
the user out). If this value is None, the ticket never expires. Optional.

reissue_time

Default: None. If this parameter is set, it represents the number of seconds that must
pass before an authentication token cookie is automatically reissued as the result of
a request which requires authentication. The duration is measured as the number of
seconds since the last auth_tkt cookie was issued and ‘now’. If this value is 0, a new
ticket cookie will be reissued on every request which requires authentication.

A good rule of thumb: if you want auto-expired cookies based on inactivity: set the
timeout value to 1200 (20 mins) and set the reissue_time value to perhaps a
tenth of the timeout value (120 or 2 mins). It’s nonsensical to set the timeout
value lower than the reissue_time value, as the ticket will never be reissued if so.
However, such a configuration is not explicitly prevented.

Optional.

max_age

Default: None. The max age of the auth_tkt cookie, in seconds. This differs from
timeout inasmuch as timeout represents the lifetime of the ticket contained in the
cookie, while this value represents the lifetime of the cookie itself. When this value
is set, the cookie’s Max-Age and Expires settings will be set, allowing the auth_tkt
cookie to last between browser sessions. It is typically nonsensical to set this to a value
that is lower than timeout or reissue_time, although it is not explicitly prevented.
Optional.

path

454

39.1. AUTHENTICATION POLICIES

Default: /. The path for which the auth_tkt cookie is valid. May be desirable if the
application only serves part of a domain. Optional.

http_only

Default: False. Hide cookie from JavaScript by setting the HttpOnly flag. Not honored
by all browsers. Optional.

wild_domain

Default: True. An auth_tkt cookie will be generated for the wildcard domain. Optional.

debug

Default: False. If debug is True, log messages to the Pyramid debug logger about
the results of various authentication steps. The output from debugging is useful for
reporting to maillist or IRC channels when asking for support.

Objects of this class implement the interface described by
pyramid.interfaces.IAuthenticationPolicy.

class RepozeWho1AuthenticationPolicy(identifier_name=’auth_tkt’, callback=None)
A Pyramid authentication policy which obtains data from the repoze.who 1.X WSGI ‘API’ (the
repoze.who.identity key in the WSGI environment).

Constructor Arguments

identifier_name

Default: auth_tkt. The repoze.who plugin name that performs remember/forget.
Optional.

callback

Default: None. A callback passed the repoze.who identity and the request, ex-
pected to return None if the user represented by the identity doesn’t exist or a sequence
of principal identifiers (possibly empty) representing groups if the user does exist. If
callback is None, the userid will be assumed to exist with no group principals.

Objects of this class implement the interface described by
pyramid.interfaces.IAuthenticationPolicy.

455

39. PYRAMID.AUTHENTICATION

class RemoteUserAuthenticationPolicy(environ_key=’REMOTE_USER’, call-
back=None, debug=False)

A Pyramid authentication policy which obtains data from the REMOTE_USER WSGI environment
variable.

Constructor Arguments

environ_key

Default: REMOTE_USER. The key in the WSGI environ which provides the userid.

callback

Default: None. A callback passed the userid and the request, expected to return None
if the userid doesn’t exist or a sequence of principal identifiers (possibly empty) repre-
senting groups if the user does exist. If callback is None, the userid will be assumed
to exist with no group principals.

debug

Default: False. If debug is True, log messages to the Pyramid debug logger about
the results of various authentication steps. The output from debugging is useful for
reporting to maillist or IRC channels when asking for support.

Objects of this class implement the interface described by
pyramid.interfaces.IAuthenticationPolicy.

class SessionAuthenticationPolicy(prefix=’auth.’, callback=None, debug=False)
A Pyramid authentication policy which gets its data from the configured session. For this authenti-
cation policy to work, you will have to follow the instructions in the Sessions to configure a session
factory.

Constructor Arguments

prefix

A prefix used when storing the authentication parameters in the session. Defaults to
‘auth.’. Optional.

callback

Default: None. A callback passed the userid and the request, expected to return None
if the userid doesn’t exist or a sequence of principal identifiers (possibly empty) if the
user does exist. If callback is None, the userid will be assumed to exist with no
principals. Optional.

debug

Default: False. If debug is True, log messages to the Pyramid debug logger about
the results of various authentication steps. The output from debugging is useful for
reporting to maillist or IRC channels when asking for support.

456

39.2. HELPER CLASSES

39.2 Helper Classes

class AuthTktCookieHelper(secret, cookie_name=’auth_tkt’, se-
cure=False, include_ip=False, time-
out=None, reissue_time=None, max_age=None,
http_only=False, path=’/’, wild_domain=True)

A helper class for use in third-party authentication policy implementations.
See pyramid.authentication.AuthTktAuthenticationPolicy for the
meanings of the constructor arguments.

class AuthTicket(secret, userid, ip, tokens=(), user_data=’‘, time=None,
cookie_name=’auth_tkt’, secure=False)

This class represents an authentication token. You must pass in the shared secret,
the userid, and the IP address. Optionally you can include tokens (a list of strings,
representing role names), ‘user_data’, which is arbitrary data available for your
own use in later scripts. Lastly, you can override the cookie name and timestamp.

Once you provide all the arguments, use .cookie_value() to generate the appropri-
ate authentication ticket.

CGI usage:

token = auth_tkt.AuthTick(’sharedsecret’, ’username’,
os.environ[’REMOTE_ADDR’], tokens=[’admin’])

print ’Status: 200 OK’
print ’Content-type: text/html’
print token.cookie()
print
... redirect HTML ...

Webware usage:

token = auth_tkt.AuthTick(’sharedsecret’, ’username’,
self.request().environ()[’REMOTE_ADDR’], tokens=[’admin’])

self.response().setCookie(’auth_tkt’, token.cookie_value())

exception AuthTktCookieHelper.BadTicket(msg, expected=None)
Exception raised when a ticket can’t be parsed. If we get far enough to determine
what the expected digest should have been, expected is set. This should not be
shown by default, but can be useful for debugging.

457

39. PYRAMID.AUTHENTICATION

AuthTktCookieHelper.forget(request)
Return a set of expires Set-Cookie headers, which will destroy any existing
auth_tkt cookie when attached to a response

AuthTktCookieHelper.identify(request)
Return a dictionary with authentication information, or None if no valid auth_tkt
is attached to request

static AuthTktCookieHelper.parse_ticket(secret, ticket, ip)
Parse the ticket, returning (timestamp, userid, tokens, user_data).

If the ticket cannot be parsed, a BadTicket exception will be raised with an
explanation.

AuthTktCookieHelper.remember(request, userid, max_age=None, to-
kens=())

Return a set of Set-Cookie headers; when set into a response, these headers will
represent a valid authentication ticket.
max_age The max age of the auth_tkt cookie, in seconds. When this value is

set, the cookie’s Max-Age and Expires settings will be set, allowing the
auth_tkt cookie to last between browser sessions. If this value is None, the
max_age value provided to the helper itself will be used as the max_age
value. Default: None.

tokens A sequence of strings that will be placed into the auth_tkt tokens field.
Each string in the sequence must be of the Python str type and must match
the regex ^[A-Za-z][A-Za-z0-9+_-]*$. Tokens are available in the re-
turned identity when an auth_tkt is found in the request and unpacked. Default:
().

458

CHAPTER

FORTY

PYRAMID.CHAMELEON_TEXT

get_template(path)
Return the underyling object representing a Chameleon text template using the template implied by
the path argument. The path argument may be a package-relative path, an absolute path, or a
asset specification.

This API is deprecated in Pyramid 1.0. Use the implementation() method of a
template renderer retrieved via pyramid.renderers.get_renderer() instead.

render_template(path, **kw)
Render a Chameleon text template using the template implied by the path argument. The path
argument may be a package-relative path, an absolute path, or a asset specification. The arguments
in *kw are passed as top-level names to the template, and so may be used within the template itself.
Returns a string.

This API is deprecated in Pyramid 1.0. Use pyramid.renderers.render() in-
stead.

render_template_to_response(path, **kw)
Render a Chameleon text template using the template implied by the path argument. The path
argument may be a package-relative path, an absolute path, or a asset specification. The arguments
in *kw are passed as top-level names to the template, and so may be used within the template itself.
Returns a Response object with the body as the template result.

This API is deprecated in Pyramid 1.0. Use
pyramid.renderers.render_to_response() instead.

459

40. PYRAMID.CHAMELEON_TEXT

These APIs will will work against template files which contain simple ${Genshi} - style replacement
markers.

The API of pyramid.chameleon_text is identical to that of pyramid.chameleon_zpt; only
its import location is different. If you need to import an API functions from this module as well as the
pyramid.chameleon_zptmodule within the same view file, use the as feature of the Python import
statement, e.g.:

1 from pyramid.chameleon_zpt import render_template as zpt_render
2 from pyramid.chameleon_text import render_template as text_render

460

CHAPTER

FORTYONE

PYRAMID.CHAMELEON_ZPT

get_template(path)
Return the underyling object representing a Chameleon ZPT template using the template implied
by the path argument. The path argument may be a package-relative path, an absolute path, or a
asset specification.

This API is deprecated in Pyramid 1.0. Use the implementation() method of a
template renderer retrieved via pyramid.renderers.get_renderer() instead.

render_template(path, **kw)
Render a Chameleon ZPT template using the template implied by the path argument. The path
argument may be a package-relative path, an absolute path, or a asset specification. The arguments
in *kw are passed as top-level names to the template, and so may be used within the template itself.
Returns a string.

This API is deprecated in Pyramid 1.0. Use pyramid.renderers.render() in-
stead.

render_template_to_response(path, **kw)
Render a Chameleon ZPT template using the template implied by the path argument. The path
argument may be a package-relative path, an absolute path, or a asset specification. The arguments
in *kw are passed as top-level names to the template, and so may be used within the template itself.
Returns a Response object with the body as the template result.

This API is deprecated in Pyramid 1.0. Use
pyramid.renderers.render_to_response() instead.

461

41. PYRAMID.CHAMELEON_ZPT

These APIs will work against files which supply template text which matches the ZPT specification.

The API of pyramid.chameleon_zpt is identical to that of pyramid.chameleon_text; only
its import location is different. If you need to import an API functions from this module as well as
the pyramid.chameleon_text module within the same view file, use the as feature of the Python
import statement, e.g.:

1 from pyramid.chameleon_zpt import render_template as zpt_render
2 from pyramid.chameleon_text import render_template as text_render

462

CHAPTER

FORTYTWO

PYRAMID.CONFIG

class Configurator(registry=None, package=None, settings=None, root_factory=None,
authentication_policy=None, authorization_policy=None, ren-
derers=None, debug_logger=None, locale_negotiator=None,
request_factory=None, renderer_globals_factory=None,
default_permission=None, session_factory=None, de-
fault_view_mapper=None, autocommit=False, exceptionre-
sponse_view=<function default_exceptionresponse_view at 0x204a578>,
route_prefix=None)

A Configurator is used to configure a Pyramid application registry.

The Configurator accepts a number of arguments: registry, package, settings,
root_factory, authentication_policy, authorization_policy,
renderers, debug_logger, locale_negotiator, request_factory,
renderer_globals_factory, default_permission, session_factory,
default_view_mapper, autocommit, exceptionresponse_view and
route_prefix.

If the registry argument is passed as a non-None value, it must be an instance of the
pyramid.registry.Registry class representing the registry to configure. If registry
is None, the configurator will create a pyramid.registry.Registry instance itself; it will
also perform some default configuration that would not otherwise be done. After its construction,
the configurator may be used to add further configuration to the registry.

If a registry is passed to the Configurator constructor, all other constructor arguments
except package are ignored.

463

42. PYRAMID.CONFIG

If the package argument is passed, it must be a reference to a Python package (e.g.
sys.modules[’thepackage’]) or a dotted Python name to the same. This value is used
as a basis to convert relative paths passed to various configuration methods, such as methods which
accept a renderer argument, into absolute paths. If None is passed (the default), the package is
assumed to be the Python package in which the caller of the Configurator constructor lives.

If the settings argument is passed, it should be a Python dictionary rep-
resenting the deployment settings for this application. These are later retriev-
able using the pyramid.registry.Registry.settings attribute (aka
request.registry.settings).

If the root_factory argument is passed, it should be an object representing the default root
factory for your application or a dotted Python name to the same. If it is None, a default root
factory will be used.

If authentication_policy is passed, it should be an instance of an authentication policy or
a dotted Python name to the same.

If authorization_policy is passed, it should be an instance of an authorization policy or a
dotted Python name to the same.

A ConfigurationError will be raised when an authorization policy is supplied with-
out also supplying an authentication policy (authorization requires authentication).

If renderers is passed, it should be a list of tuples representing a set of renderer factories which
should be configured into this application (each tuple representing a set of positional values that
should be passed to pyramid.config.Configurator.add_renderer()). If it is not
passed, a default set of renderer factories is used.

If debug_logger is not passed, a default debug logger that logs to a logger will be used (the
logger name will be the package name of the caller of this configurator). If it is passed, it should
be an instance of the logging.Logger (PEP 282) standard library class or a Python logger
name. The debug logger is used by Pyramid itself to log warnings and authorization debugging
information.

If locale_negotiator is passed, it should be a locale negotiator implementation or a dotted
Python name to same. See Using a Custom Locale Negotiator.

If request_factory is passed, it should be a request factory implementation or a dotted Python
name to the same. See Changing the Request Factory. By default it is None, which means use the
default request factory.

464

If renderer_globals_factory is passed, it should be a renderer globals factory implemen-
tation or a dotted Python name to the same. See Adding Renderer Globals (Deprecated). By default,
it is None, which means use no renderer globals factory.

as of Pyramid 1.1, renderer_globals_factory is deprecated. Instead, use a Be-
foreRender event subscriber as per Using The Before Render Event.

If default_permission is passed, it should be a permission string to be used as the default
permission for all view configuration registrations performed against this Configurator. An exam-
ple of a permission string:’view’. Adding a default permission makes it unnecessary to protect
each view configuration with an explicit permission, unless your application policy requires some
exception for a particular view. By default, default_permission is None, meaning that view
configurations which do not explicitly declare a permission will always be executable by entirely
anonymous users (any authorization policy in effect is ignored). See also Setting a Default Permis-
sion.

If session_factory is passed, it should be an object which implements the session factory
interface. If a nondefault value is passed, the session_factory will be used to create a ses-
sion object when request.session is accessed. Note that the same outcome can be achieved
by calling pyramid.config.Configurator.set_session_factory(). By default,
this argument is None, indicating that no session factory will be configured (and thus accessing
request.session will throw an error) unless set_session_factory is called later dur-
ing configuration.

If autocommit is True, every method called on the configurator will cause an immediate action,
and no configuration conflict detection will be used. If autocommit is False, most methods of
the configurator will defer their action until pyramid.config.Configurator.commit()
is called. When pyramid.config.Configurator.commit() is called, the actions im-
plied by the called methods will be checked for configuration conflicts unless autocommit is
True. If a conflict is detected a ConfigurationConflictError will be raised. Calling
pyramid.config.Configurator.make_wsgi_app() always implies a final commit.

If default_view_mapper is passed, it will be used as the default view
mapper factory for view configurations that don’t otherwise specify one (see
pyramid.interfaces.IViewMapperFactory). If a default_view_mapper is not
passed, a superdefault view mapper will be used.

If exceptionresponse_view is passed, it must be a view callable or None. If it is a
view callable, it will be used as an exception view callable when an exception response is
raised. If exceptionresponse_view is None, no exception response view will be regis-
tered, and all raised exception responses will be bubbled up to Pyramid’s caller. By default, the

465

42. PYRAMID.CONFIG

pyramid.httpexceptions.default_exceptionresponse_view function is used as
the exceptionresponse_view. This argument is new in Pyramid 1.1.

If route_prefix is passed, all routes added with pyramid.config.Configurator.add_route()
will have the specified path prepended to their pattern. This parameter is new in Pyramid 1.2.

registry
The application registry which holds the configuration associated with this configurator.

begin(request=None)
Indicate that application or test configuration has begun. This pushes a dictionary contain-
ing the application registry implied by registry attribute of this configurator and the re-
quest implied by the request argument on to the thread local stack consulted by various
pyramid.threadlocal API functions.

end()
Indicate that application or test configuration has ended. This pops the last value pushed on
to the thread local stack (usually by the begin method) and returns that value.

hook_zca()
Call zope.component.getSiteManager.sethook() with the argument
pyramid.threadlocal.get_current_registry, causing the Zope Compo-
nent Architecture ‘global’ APIs such as zope.component.getSiteManager(),
zope.component.getAdapter() and others to use the Pyramid application registry
rather than the Zope ‘global’ registry.

unhook_zca()
Call zope.component.getSiteManager.reset() to undo the action of
pyramid.config.Configurator.hook_zca().

get_settings()
Return a deployment settings object for the current application. A deployment settings object
is a dictionary-like object that contains key/value pairs based on the dictionary passed as the
settings argument to the pyramid.config.Configurator constructor.

the pyramid.registry.Registry.settings API performs the same duty.

commit()
Commit any pending configuration actions. If a configuration conflict is detected in the pend-
ing configuration actions, this method will raise a ConfigurationConflictError;
within the traceback of this error will be information about the source of the conflict, usu-
ally including file names and line numbers of the cause of the configuration conflicts.

466

action(discriminator, callable=None, args=(), kw=None, order=0)
Register an action which will be executed when pyramid.config.Configurator.commit()
is called (or executed immediately if autocommit is True).

This method is typically only used by Pyramid framework extension authors, not by
Pyramid application developers.

The discriminator uniquely identifies the action. It must be given, but it can be None,
to indicate that the action never conflicts. It must be a hashable value.

The callable is a callable object which performs the action. It is optional. args and kw
are tuple and dict objects respectively, which are passed to callable when this action is
executed.

order is a crude order control mechanism, only rarely used (has no effect when autocommit
is True).

include(callable, route_prefix=None)
Include a configuration callables, to support imperative application extensibility.

In versions of Pyramid prior to 1.2, this function accepted *callables, but this
has been changed to support only a single callable.

A configuration callable should be a callable that accepts a single argument named config,
which will be an instance of a Configurator (be warned that it will not be the same configurator
instance on which you call this method, however). The code which runs as the result of calling
the callable should invoke methods on the configurator passed to it which add configuration
state. The return value of a callable will be ignored.

Values allowed to be presented via the callable argument to this method: any callable
Python object or any dotted Python name which resolves to a callable Python object. It may
also be a Python module, in which case, the module will be searched for a callable named
includeme, which will be treated as the configuration callable.

For example, if the includeme function below lives in a module named
myapp.myconfig:

467

42. PYRAMID.CONFIG

1 # myapp.myconfig module
2

3 def my_view(request):
4 from pyramid.response import Response
5 return Response(’OK’)
6

7 def includeme(config):
8 config.add_view(my_view)

You might cause it be included within your Pyramid application like so:

1 from pyramid.config import Configurator
2

3 def main(global_config, **settings):
4 config = Configurator()
5 config.include(’myapp.myconfig.includeme’)

Because the function is named includeme, the function name can also be omitted from the
dotted name reference:

1 from pyramid.config import Configurator
2

3 def main(global_config, **settings):
4 config = Configurator()
5 config.include(’myapp.myconfig’)

Included configuration statements will be overridden by local configuration statements if an
included callable causes a configuration conflict by registering something with the same con-
figuration parameters.

If the route_prefix is supplied, it must be a string. Any calls to
pyramid.config.Configurator.add_route() within the included callable
will have their pattern prefixed with the value of route_prefix. This can be used to help
mount a set of routes at a different location than the included callable’s author intended while
still maintaining the same route names. For example:

1 from pyramid.config import Configurator
2

3 def included(config):
4 config.add_route(’show_users’, ’/show’)
5

6 def main(global_config, **settings):

468

7 config = Configurator()
8 config.include(included, route_prefix=’/users’)

In the above configuration, the show_users route will have an effective route pattern
of /users/show, instead of /show because the route_prefix argument will be
prepended to the pattern.

The route_prefix parameter is new as of Pyramid 1.2.

add_directive(name, directive, action_wrap=True)
Add a directive method to the configurator.

This method is typically only used by Pyramid framework extension authors, not by
Pyramid application developers.

Framework extenders can add directive methods to a configurator by instructing their users
to call config.add_directive(’somename’, ’some.callable’). This will
make some.callable accessible as config.somename. some.callable should be
a function which accepts config as a first argument, and arbitrary positional and keyword
arguments following. It should use config.action as necessary to perform actions. Directive
methods can then be invoked like ‘built-in’ directives such as add_view, add_route, etc.

The action_wrap argument should be True for directives which perform
config.action with potentially conflicting discriminators. action_wrap will
cause the directive to be wrapped in a decorator which provides more accurate conflict cause
information.

add_directive does not participate in conflict detection, and later calls to
add_directive will override earlier calls.

with_package(package)
Return a new Configurator instance with the same registry as this configurator using the pack-
age supplied as the package argument to the new configurator. package may be an actual
Python package object or a dotted Python name representing a package.

maybe_dotted(dotted)
Resolve the dotted Python name dotted to a global Python object. If dotted is not a
string, return it without attempting to do any name resolution. If dotted is a relative dot-
ted name (e.g. .foo.bar, consider it relative to the package argument supplied to this
Configurator’s constructor.

469

42. PYRAMID.CONFIG

absolute_asset_spec(relative_spec)
Resolve the potentially relative asset specification string passed as relative_spec into an
absolute asset specification string and return the string. Use the package of this configurator
as the package to which the asset specification will be considered relative when generating an
absolute asset specification. If the provided relative_spec argument is already absolute,
or if the relative_spec is not a string, it is simply returned.

setup_registry(settings=None, root_factory=None, authentication_policy=None, au-
thorization_policy=None, renderers=None, debug_logger=None,
locale_negotiator=None, request_factory=None, ren-
derer_globals_factory=None, default_permission=None, ses-
sion_factory=None, default_view_mapper=None, exception-
response_view=<function default_exceptionresponse_view at
0x204a578>)

When you pass a non-None registry argument to the Configurator constructor, no initial
setup is performed against the registry. This is because the registry you pass in may have
already been initialized for use under Pyramid via a different configurator. However, in some
circumstances (such as when you want to use a global registry instead of a registry created
as a result of the Configurator constructor), or when you want to reset the initial setup of a
registry, you do want to explicitly initialize the registry associated with a Configurator for use
under Pyramid. Use setup_registry to do this initialization.

setup_registry configures settings, a root factory, security policies, renderers, a debug
logger, a locale negotiator, and various other settings using the configurator’s current registry,
as per the descriptions in the Configurator constructor.

add_renderer(name, factory)
Add a Pyramid renderer factory to the current configuration state.

The name argument is the renderer name. Use None to represent the default renderer (a
renderer which will be used for all views unless they name another renderer specifically).

The factory argument is Python reference to an implementation of a renderer factory or a
dotted Python name to same.

add_response_adapter(adapter, type_or_iface)
When an object of type (or interface) type_or_iface is returned from a view callable,
Pyramid will use the adapter adapter to convert it into an object which implements the
pyramid.interfaces.IResponse interface. If adapter is None, an object returned
of type (or interface) type_or_iface will itself be used as a response object.

adapter and type_or_interfacemay be Python objects or strings representing dotted
names to importable Python global objects.

See Changing How Pyramid Treats View Responses for more information.

470

add_route(name, pattern=None, view=None, view_for=None, permission=None,
factory=None, for_=None, header=None, xhr=False, accept=None,
path_info=None, request_method=None, request_param=None, tra-
verse=None, custom_predicates=(), view_permission=None, ren-
derer=None, view_renderer=None, view_context=None, view_attr=None,
use_global_views=False, path=None, pregenerator=None, static=False)

Add a route configuration to the current configuration state, as well as possibly a view config-
uration to be used to specify a view callable that will be invoked when this route matches. The
arguments to this method are divided into predicate, non-predicate, and view-related types.
Route predicate arguments narrow the circumstances in which a route will be match a request;
non-predicate arguments are informational.

Non-Predicate Arguments

name

The name of the route, e.g. myroute. This attribute is required. It must be unique
among all defined routes in a given application.

factory

A Python object (often a function or a class) or a dotted Python name which refers
to the same object that will generate a Pyramid root resource object when this route
matches. For example, mypackage.resources.MyFactory. If this argument
is not specified, a default root factory will be used. See The Resource Tree for more
information about root factories.

traverse

If you would like to cause the context to be something other than the root object when
this route matches, you can spell a traversal pattern as the traverse argument.
This traversal pattern will be used as the traversal path: traversal will begin at the
root object implied by this route (either the global root, or the object returned by the
factory associated with this route).

The syntax of the traverse argument is the same as it is for pattern. For exam-
ple, if the pattern provided to add_route is articles/{article}/edit,
and the traverse argument provided to add_route is /{article}, when a
request comes in that causes the route to match in such a way that the article
match value is ‘1’ (when the request URI is /articles/1/edit), the traversal
path will be generated as /1. This means that the root object’s __getitem__ will
be called with the name 1 during the traversal phase. If the 1 object exists, it will
become the context of the request. Traversal has more information about traversal.

471

42. PYRAMID.CONFIG

If the traversal path contains segment marker names which are not present in the
pattern argument, a runtime error will occur. The traverse pattern should not
contain segment markers that do not exist in the pattern argument.

A similar combining of routing and traversal is available when a route is matched
which contains a *traverse remainder marker in its pattern (see Using *traverse
In a Route Pattern). The traverse argument to add_route allows you to asso-
ciate route patterns with an arbitrary traversal path without using a a *traverse
remainder marker; instead you can use other match information.

Note that the traverse argument to add_route is ignored when attached to a
route that has a *traverse remainder marker in its pattern.

pregenerator

This option should be a callable object that implements the
pyramid.interfaces.IRoutePregenerator interface. A pregener-
ator is a callable called by the pyramid.request.Request.route_url()
function to augment or replace the arguments it is passed when generating a URL
for the route. This is a feature not often used directly by applications, it is meant to
be hooked by frameworks that use Pyramid as a base.

use_global_views

When a request matches this route, and view lookup cannot find a view which has
a route_name predicate argument that matches the route, try to fall back to using
a view that otherwise matches the context, request, and view name (but which does
not match the route_name predicate).

static

If static is True, this route will never match an incoming request; it will only be
useful for URL generation. By default, static is False. See Static Routes.

New in Pyramid 1.1.

Predicate Arguments

pattern

472

The pattern of the route e.g. ideas/{idea}. This argument is required. See
Route Pattern Syntax for information about the syntax of route patterns. If the pattern
doesn’t match the current URL, route matching continues.

For backwards compatibility purposes (as of Pyramid 1.0), a path key-
word argument passed to this function will be used to represent the pattern value
if the pattern argument is None. If both path and pattern are passed,
pattern wins.

xhr

This value should be either True or False. If this value is specified
and is True, the request must possess an HTTP_X_REQUESTED_WITH (aka
X-Requested-With) header for this route to match. This is useful for detect-
ing AJAX requests issued from jQuery, Prototype and other Javascript libraries. If
this predicate returns False, route matching continues.

request_method

A string representing an HTTP method name, e.g. GET, POST, HEAD, DELETE,
PUT or a tuple of elements containing HTTP method names. If this argument is
not specified, this route will match if the request has any request method. If this
predicate returns False, route matching continues.

The ability to pass a tuple of items as request_method is new as of
Pyramid 1.2. Previous versions allowed only a string.

path_info

This value represents a regular expression pattern that will be tested against the
PATH_INFO WSGI environment variable. If the regex matches, this predicate will
return True. If this predicate returns False, route matching continues.

request_param

This value can be any string. A view declaration with this argument ensures
that the associated route will only match when the request has a key in the
request.params dictionary (an HTTP GET or POST variable) that has a name
which matches the supplied value. If the value supplied as the argument has a = sign
in it, e.g. request_param="foo=123", then the key (foo) must both exist in
the request.params dictionary, and the value must match the right hand side of
the expression (123) for the route to “match” the current request. If this predicate
returns False, route matching continues.

473

42. PYRAMID.CONFIG

header

This argument represents an HTTP header name or a header name/value pair. If
the argument contains a : (colon), it will be considered a name/value pair (e.g.
User-Agent:Mozilla/.* or Host:localhost). If the value contains a
colon, the value portion should be a regular expression. If the value does not
contain a colon, the entire value will be considered to be the header name (e.g.
If-Modified-Since). If the value evaluates to a header name only without
a value, the header specified by the name must be present in the request for this
predicate to be true. If the value evaluates to a header name/value pair, the header
specified by the name must be present in the request and the regular expression
specified as the value must match the header value. Whether or not the value repre-
sents a header name or a header name/value pair, the case of the header name is not
significant. If this predicate returns False, route matching continues.

accept

This value represents a match query for one or more mimetypes in the Accept
HTTP request header. If this value is specified, it must be in one of the following
forms: a mimetype match token in the form text/plain, a wildcard mimetype
match token in the form text/* or a match-all wildcard mimetype match token in
the form */*. If any of the forms matches the Accept header of the request, this
predicate will be true. If this predicate returns False, route matching continues.

custom_predicates

This value should be a sequence of references to custom predicate callables. Use
custom predicates when no set of predefined predicates does what you need. Custom
predicates can be combined with predefined predicates as necessary. Each custom
predicate callable should accept two arguments: info and request and should
return either True or False after doing arbitrary evaluation of the info and/or the
request. If all custom and non-custom predicate callables return True the associated
route will be considered viable for a given request. If any predicate callable returns
False, route matching continues. Note that the value info passed to a custom
route predicate is a dictionary containing matching information; see Custom Route
Predicates for more information about info.

View-Related Arguments

The arguments described below have been deprecated as of Pyramid
1.1. Do not use these for new development; they should only be used to
support older code bases which depend upon them. Use a separate call to
pyramid.config.Configurator.add_view() to associate a view with a route
using the route_name argument.

view

474

Deprecated as of Pyramid 1.1.

A Python object or dotted Python name to the same object that will be used as a view
callable when this route matches. e.g. mypackage.views.my_view.

view_context

Deprecated as of Pyramid 1.1.

A class or an interface or dotted Python name to the same object which the context of
the view should match for the view named by the route to be used. This argument is
only useful if the view attribute is used. If this attribute is not specified, the default
(None) will be used.

If the view argument is not provided, this argument has no effect.

This attribute can also be spelled as for_ or view_for.

view_permission

Deprecated as of Pyramid 1.1.

The permission name required to invoke the view associated with this route. e.g.
edit. (see Using Pyramid Security With URL Dispatch for more information about
permissions).

If the view attribute is not provided, this argument has no effect.

This argument can also be spelled as permission.

view_renderer

475

42. PYRAMID.CONFIG

Deprecated as of Pyramid 1.1.

This is either a single string term (e.g. json) or a string implying a path or asset
specification (e.g. templates/views.pt). If the renderer value is a single term
(does not contain a dot .), the specified term will be used to look up a renderer im-
plementation, and that renderer implementation will be used to construct a response
from the view return value. If the renderer term contains a dot (.), the specified
term will be treated as a path, and the filename extension of the last element in the
path will be used to look up the renderer implementation, which will be passed the
full path. The renderer implementation will be used to construct a response from
the view return value. See Writing View Callables Which Use a Renderer for more
information.

If the view argument is not provided, this argument has no effect.

This argument can also be spelled as renderer.

view_attr

Deprecated as of Pyramid 1.1.

The view machinery defaults to using the __call__ method of the view callable
(or the function itself, if the view callable is a function) to obtain a response dictio-
nary. The attr value allows you to vary the method attribute used to obtain the
response. For example, if your view was a class, and the class has a method named
index and you wanted to use this method instead of the class’ __call__ method
to return the response, you’d say attr="index" in the view configuration for the
view. This is most useful when the view definition is a class.

If the view argument is not provided, this argument has no effect.

add_static_view(name, path, **kw)
Add a view used to render static assets such as images and CSS files.

The name argument is a string representing an application-relative local URL prefix. It may
alternately be a full URL.

The path argument is the path on disk where the static files reside. This can be an absolute
path, a package-relative path, or a asset specification.

476

The cache_max_age keyword argument is input to set the Expires and
Cache-Control headers for static assets served. Note that this argument has no ef-
fect when the name is a url prefix. By default, this argument is None, meaning that no
particular Expires or Cache-Control headers are set in the response.

The permission keyword argument is used to specify the permission re-
quired by a user to execute the static view. By default, it is the string
pyramid.security.NO_PERMISSION_REQUIRED, a special sentinel which in-
dicates that, even if a default permission exists for the current application, the static view
should be renderered to completely anonymous users. This default value is permissive be-
cause, in most web apps, static assets seldom need protection from viewing. If permission
is specified, the security checking will be performed against the default root factory ACL.

Any other keyword arguments sent to add_static_view are passed on to
pyramid.config.Configurator.add_route() (e.g. factory, perhaps to define
a custom factory with a custom ACL for this static view).

Usage

The add_static_view function is typically used in conjunction with the
pyramid.request.Request.static_url() method. add_static_view
adds a view which renders a static asset when some URL is visited;
pyramid.request.Request.static_url() generates a URL to that asset.

The name argument to add_static_view is usually a view name. When this is the case,
the pyramid.request.Request.static_url() API will generate a URL which
points to a Pyramid view, which will serve up a set of assets that live in the package itself. For
example:

add_static_view(’images’, ’mypackage:images/’)

Code that registers such a view can generate URLs to the view via
pyramid.request.Request.static_url():

request.static_url(’mypackage:images/logo.png’)

When add_static_view is called with a name argument that represents a URL prefix,
as it is above, subsequent calls to pyramid.request.Request.static_url() with
paths that start with the path argument passed to add_static_view will generate a URL
something like http://<Pyramid app URL>/images/logo.png, which will cause
the logo.png file in the images subdirectory of the mypackage package to be served.

477

42. PYRAMID.CONFIG

add_static_view can alternately be used with a name argument which is a URL,
causing static assets to be served from an external webserver. This happens when
the name argument is a fully qualified URL (e.g. starts with http:// or simi-
lar). In this mode, the name is used as the prefix of the full URL when generat-
ing a URL using pyramid.request.Request.static_url(). For example, if
add_static_view is called like so:

add_static_view(’http://example.com/images’, ’mypackage:images/’)

Subsequently, the URLs generated by pyramid.request.Request.static_url()
for that static view will be prefixed with http://example.com/images:

static_url(’mypackage:images/logo.png’, request)

When add_static_view is called with a name argument that
is the URL http://example.com/images, subsequent calls to
pyramid.request.Request.static_url() with paths that start with the
path argument passed to add_static_view will generate a URL something
like http://example.com/logo.png. The external webserver listening on
example.com must be itself configured to respond properly to such a request.

See Serving Static Assets for more information.

add_settings(settings=None, **kw)
Augment the deployment settings with one or more key/value pairs.

You may pass a dictionary:

config.add_settings({’external_uri’:’http://example.com’})

Or a set of key/value pairs:

config.add_settings(external_uri=’http://example.com’)

This function is useful when you need to test code that ac-
cesses the pyramid.registry.Registry.settings API (or the
pyramid.config.Configurator.get_settings() API) and which uses
values from that API.

478

add_subscriber(subscriber, iface=None)
Add an event subscriber for the event stream implied by the supplied iface interface. The
subscriber argument represents a callable object (or a dotted Python name which iden-
tifies a callable); it will be called with a single object event whenever Pyramid emits an
event associated with the iface, which may be an interface or a class or a dotted Python
name to a global object representing an interface or a class. Using the default iface value,
None will cause the subscriber to be registered for all event types. See Using Events for more
information about events and subscribers.

add_translation_dirs(*specs)
Add one or more translation directory paths to the current configuration state. The
specs argument is a sequence that may contain absolute directory paths (e.g.
/usr/share/locale) or asset specification names naming a directory path (e.g.
some.package:locale) or a combination of the two.

Example:

config.add_translation_dirs(’/usr/share/locale’,
’some.package:locale’)

Later calls to add_translation_dir insert directories into the beginning of the list of
translation directories created by earlier calls. This means that the same translation found
in a directory added later in the configuration process will be found before one added ear-
lier in the configuration process. However, if multiple specs are provided in a single call to
add_translation_dirs, the directories will be inserted into the beginning of the direc-
tory list in the order they’re provided in the *specs list argument (items earlier in the list
trump ones later in the list).

add_view(view=None, name=’‘, for_=None, permission=None, request_type=None,
route_name=None, request_method=None, request_param=None, con-
tainment=None, attr=None, renderer=None, wrapper=None, xhr=False,
accept=None, header=None, path_info=None, custom_predicates=(),
context=None, decorator=None, mapper=None, http_cache=None,
match_param=None)

Add a view configuration to the current configuration state. Arguments to add_view are
broken down below into predicate arguments and non-predicate arguments. Predicate argu-
ments narrow the circumstances in which the view callable will be invoked when a request is
presented to Pyramid; non-predicate arguments are informational.

Non-Predicate Arguments

view

479

42. PYRAMID.CONFIG

A view callable or a dotted Python name which refers to a view callable. This
argument is required unless a renderer argument also exists. If a renderer
argument is passed, and a view argument is not provided, the view callable defaults
to a callable that returns an empty dictionary (see Writing View Callables Which Use
a Renderer).

permission

The name of a permission that the user must possess in order to in-
voke the view callable. See Configuring View Security for more in-
formation about view security and permissions. If permission
is omitted, a default permission may be used for this view registra-
tion if one was named as the pyramid.config.Configurator
constructor’s default_permission argument, or if
pyramid.config.Configurator.set_default_permission()
was used prior to this view registration. Pass the string
pyramid.security.NO_PERMISSION_REQUIRED as the permission
argument to explicitly indicate that the view should always be executable by entirely
anonymous users, regardless of the default permission, bypassing any authorization
policy that may be in effect.

attr

The view machinery defaults to using the __call__ method of the view callable
(or the function itself, if the view callable is a function) to obtain a response. The
attr value allows you to vary the method attribute used to obtain the response. For
example, if your view was a class, and the class has a method named index and
you wanted to use this method instead of the class’ __call__ method to return the
response, you’d say attr="index" in the view configuration for the view. This
is most useful when the view definition is a class.

renderer

This is either a single string term (e.g. json) or a string implying a path or asset
specification (e.g. templates/views.pt) naming a renderer implementation.
If the renderer value does not contain a dot ., the specified string will be used to
look up a renderer implementation, and that renderer implementation will be used to
construct a response from the view return value. If the renderer value contains a
dot (.), the specified term will be treated as a path, and the filename extension of the
last element in the path will be used to look up the renderer implementation, which
will be passed the full path. The renderer implementation will be used to construct
a response from the view return value.

480

Note that if the view itself returns a response (see View Callable Responses), the
specified renderer implementation is never called.

When the renderer is a path, although a path is usually just a simple relative path-
name (e.g. templates/foo.pt, implying that a template named “foo.pt” is in
the “templates” directory relative to the directory of the current package of the Con-
figurator), a path can be absolute, starting with a slash on UNIX or a drive letter
prefix on Windows. The path can alternately be a asset specification in the form
some.dotted.package_name:relative/path, making it possible to ad-
dress template assets which live in a separate package.

The renderer attribute is optional. If it is not defined, the “null” renderer is
assumed (no rendering is performed and the value is passed back to the upstream
Pyramid machinery unmodified).

http_cache

This feature is new as of Pyramid 1.1.

When you supply an http_cache value to a view configuration, the Expires
and Cache-Control headers of a response generated by the associated view
callable are modified. The value for http_cache may be one of the following:

•A nonzero integer. If it’s a nonzero integer, it’s treated as a number of sec-
onds. This number of seconds will be used to compute the Expires header
and the Cache-Control: max-age parameter of responses to requests
which call this view. For example: http_cache=3600 instructs the request-
ing browser to ‘cache this response for an hour, please’.

•A datetime.timedelta instance. If it’s a datetime.timedelta in-
stance, it will be converted into a number of seconds, and that number of sec-
onds will be used to compute the Expires header and the Cache-Control:
max-age parameter of responses to requests which call this view. For example:
http_cache=datetime.timedelta(days=1) instructs the requesting
browser to ‘cache this response for a day, please’.

•Zero (0). If the value is zero, the Cache-Control and Expires headers
present in all responses from this view will be composed such that client browser
cache (and any intermediate caches) are instructed to never cache the response.

481

42. PYRAMID.CONFIG

•A two-tuple. If it’s a two tuple (e.g. http_cache=(1,
{’public’:True})), the first value in the tuple may be a nonzero in-
teger or a datetime.timedelta instance; in either case this value will
be used as the number of seconds to cache the response. The second value
in the tuple must be a dictionary. The values present in the dictionary will
be used as input to the Cache-Control response header. For example:
http_cache=(3600, {’public’:True}) means ‘cache for an hour,
and add public to the Cache-Control header of the response’. All keys
and values supported by the webob.cachecontrol.CacheControl
interface may be added to the dictionary. Supplying {’public’:True} is
equivalent to calling response.cache_control.public = True.

Providing a non-tuple value as http_cache is equivalent to calling
response.cache_expires(value) within your view’s body.

Providing a two-tuple value as http_cache is equivalent to calling
response.cache_expires(value[0], **value[1]) within your
view’s body.

If you wish to avoid influencing, the Expires header, and instead wish to only
influence Cache-Control headers, pass a tuple as http_cache with the first
element of None, e.g.: (None, {’public’:True}).

If you wish to prevent a view that uses http_cache in its configura-
tion from having its caching response headers changed by this machinery, set
response.cache_control.prevent_auto = True before returning the
response from the view. This effectively disables any HTTP caching done by
http_cache for that response.

wrapper

The view name of a different view configuration which will receive the response
body of this view as the request.wrapped_body attribute of its own request,
and the response returned by this view as the request.wrapped_response
attribute of its own request. Using a wrapper makes it possible to “chain”
views together to form a composite response. The response of the outermost
wrapper view will be returned to the user. The wrapper view will be found
as any view is found: see View Configuration. The “best” wrapper view will
be found based on the lookup ordering: “under the hood” this wrapper view
is looked up via pyramid.view.render_view_to_response(context,
request, ’wrapper_viewname’). The context and request of a wrapper
view is the same context and request of the inner view. If this attribute is unspeci-
fied, no view wrapping is done.

482

decorator

A dotted Python name to function (or the function itself) which will be used to
decorate the registered view callable. The decorator function will be called with
the view callable as a single argument. The view callable it is passed will accept
(context, request). The decorator must return a replacement view callable
which also accepts (context, request).

mapper

A Python object or dotted Python name which refers to a view mapper, or None. By
default it is None, which indicates that the view should use the default view mapper.
This plug-point is useful for Pyramid extension developers, but it’s not very useful
for ‘civilians’ who are just developing stock Pyramid applications. Pay no attention
to the man behind the curtain.

Predicate Arguments

name

The view name. Read Traversal to understand the concept of a view name.

context

An object or a dotted Python name referring to an interface or class object that the
context must be an instance of, or the interface that the context must provide in order
for this view to be found and called. This predicate is true when the context is an
instance of the represented class or if the context provides the represented interface;
it is otherwise false. This argument may also be provided to add_view as for_
(an older, still-supported spelling).

route_name

This value must match the name of a route configuration declaration (see URL Dis-
patch) that must match before this view will be called.

request_type

This value should be an interface that the request must provide in order for this view
to be found and called. This value exists only for backwards compatibility purposes.

request_method

483

42. PYRAMID.CONFIG

This value can be one of the strings GET, POST, PUT, DELETE, or HEAD repre-
senting an HTTP REQUEST_METHOD, or a tuple containing one or more of these
strings. A view declaration with this argument ensures that the view will only be
called when the request’s method attribute (aka the REQUEST_METHOD of the
WSGI environment) string matches a supplied value.

The ability to pass a tuple of items as request_method is new as of
Pyramid 1.2. Previous versions allowed only a string.

request_param

This value can be any string. A view declaration with this argument en-
sures that the view will only be called when the request has a key in the
request.params dictionary (an HTTP GET or POST variable) that has a name
which matches the supplied value. If the value supplied has a = sign in it,
e.g. request_param="foo=123", then the key (foo) must both exist in the
request.params dictionary, and the value must match the right hand side of the
expression (123) for the view to “match” the current request.

match_param

This feature is new as of Pyramid 1.2.

This param may be either a single string of the format “key=value” or a dict of
key/value pairs.

A view declaration with this argument ensures that the view will only be called
when the request has key/value pairs in its matchdict that equal those supplied in
the predicate. e.g. match_param="action=edit" would require the
‘‘action parameter in the matchdict match the right hande side of the expression
(edit) for the view to “match” the current request.

If the match_param is a dict, every key/value pair must match for the predicate to
pass.

containment

This value should be a Python class or interface (or a dotted Python name) that
an object in the lineage of the context must provide in order for this view to be
found and called. The nodes in your object graph must be “location-aware” to use
this feature. See Location-Aware Resources for more information about location-
awareness.

484

xhr

This value should be either True or False. If this value is specified
and is True, the request must possess an HTTP_X_REQUESTED_WITH (aka
X-Requested-With) header that has the value XMLHttpRequest for this view
to be found and called. This is useful for detecting AJAX requests issued from
jQuery, Prototype and other Javascript libraries.

accept

The value of this argument represents a match query for one or more mimetypes in
the Accept HTTP request header. If this value is specified, it must be in one of
the following forms: a mimetype match token in the form text/plain, a wild-
card mimetype match token in the form text/* or a match-all wildcard mimetype
match token in the form */*. If any of the forms matches the Accept header of
the request, this predicate will be true.

header

This value represents an HTTP header name or a header name/value pair. If
the value contains a : (colon), it will be considered a name/value pair (e.g.
User-Agent:Mozilla/.* or Host:localhost). The value portion should
be a regular expression. If the value does not contain a colon, the entire value will
be considered to be the header name (e.g. If-Modified-Since). If the value
evaluates to a header name only without a value, the header specified by the name
must be present in the request for this predicate to be true. If the value evaluates
to a header name/value pair, the header specified by the name must be present in
the request and the regular expression specified as the value must match the header
value. Whether or not the value represents a header name or a header name/value
pair, the case of the header name is not significant.

path_info

This value represents a regular expression pattern that will be tested against the
PATH_INFO WSGI environment variable. If the regex matches, this predicate will
be True.

custom_predicates

This value should be a sequence of references to custom predicate callables. Use
custom predicates when no set of predefined predicates do what you need. Cus-
tom predicates can be combined with predefined predicates as necessary. Each cus-
tom predicate callable should accept two arguments: context and request and
should return either True or False after doing arbitrary evaluation of the context
and/or the request. If all callables return True, the associated view callable will be
considered viable for a given request.

485

42. PYRAMID.CONFIG

add_tween(tween_factory, under=None, over=None)

This feature is new as of Pyramid 1.2.

Add a ‘tween factory’. A tween (a contraction of ‘between’) is a bit of code that sits between
the Pyramid router’s main request handling function and the upstream WSGI component that
uses Pyramid as its ‘app’. Tweens are a feature that may be used by Pyramid framework
extensions, to provide, for example, Pyramid-specific view timing support, bookkeeping code
that examines exceptions before they are returned to the upstream WSGI application, or a
variety of other features. Tweens behave a bit like WSGI ‘middleware’ but they have the
benefit of running in a context in which they have access to the Pyramid application registry
as well as the Pyramid rendering machinery.

You can view the tween ordering configured into a given Pyramid application by
using the paster ptweens command. See Displaying “Tweens”.

The tween_factory argument must be a dotted Python name to a global object represent-
ing the tween factory.

The under and over arguments allow the caller of add_tween to provide a hint about
where in the tween chain this tween factory should be placed when an implicit tween chain
is used. These hints are only used when an explicit tween chain is not used (when the
pyramid.tweens configuration value is not set). Allowable values for under or over
(or both) are:

•None (the default).

•A dotted Python name to a tween factory: a string representing the dotted name of a
tween factory added in a call to add_tween in the same configuration session.

•One of the constants pyramid.tweens.MAIN, pyramid.tweens.INGRESS, or
pyramid.tweens.EXCVIEW.

•An iterable of any combination of the above. This allows the user to specify fallbacks if
the desired tween is not included, as well as compatibility with multiple other tweens.

under means ‘closer to the main Pyramid application than’, over means ‘closer to the
request ingress than’.

For example, calling add_tween(’myapp.tfactory’,
over=pyramid.tweens.MAIN) will attempt to place the tween factory represented by

486

the dotted name myapp.tfactory directly ‘above’ (in paster ptweens order) the
main Pyramid request handler. Likewise, calling add_tween(’myapp.tfactory’,
over=pyramid.tweens.MAIN, under=’mypkg.someothertween’) will
attempt to place this tween factory ‘above’ the main handler but ‘below’ (a fictional)
‘mypkg.someothertween’ tween factory.

If all options for under (or over) cannot be found in the current configuration, it is an
error. If some options are specified purely for compatibilty with other tweens, just add a
fallback of MAIN or INGRESS. For example, under=(’mypkg.someothertween’,
’mypkg.someothertween2’, INGRESS). This constraint will require the tween to be
located under both the ‘mypkg.someothertween’ tween, the ‘mypkg.someothertween2’ tween,
and INGRESS. If any of these is not in the current configuration, this constraint will only
organize itself based on the tweens that are present.

Specifying neither over nor under is equivalent to specifying under=INGRESS.

Implicit tween ordering is obviously only best-effort. Pyramid will attempt to present an
implicit order of tweens as best it can, but the only surefire way to get any particular ordering
is to use an explicit tween order. A user may always override the implicit tween ordering by
using an explicit pyramid.tweens configuration value setting.

under, and over arguments are ignored when an explicit tween chain is specified using the
pyramid.tweens configuration value.

For more information, see Registering “Tweens”.

derive_view(view, attr=None, renderer=None)
Create a view callable using the function, instance, or class (or dotted Python name referring
to the same) provided as view object.

This method is typically only used by Pyramid framework extension authors, not by
Pyramid application developers.

This is API is useful to framework extenders who create pluggable systems which need to reg-
ister ‘proxy’ view callables for functions, instances, or classes which meet the requirements
of being a Pyramid view callable. For example, a some_other_framework function in
another framework may want to allow a user to supply a view callable, but he may want to
wrap the view callable in his own before registering the wrapper as a Pyramid view callable.
Because a Pyramid view callable can be any of a number of valid objects, the framework ex-
tender will not know how to call the user-supplied object. Running it through derive_view
normalizes it to a callable which accepts two arguments: context and request.

For example:

487

42. PYRAMID.CONFIG

def some_other_framework(user_supplied_view):
config = Configurator(reg)
proxy_view = config.derive_view(user_supplied_view)
def my_wrapper(context, request):

do_something_that_mutates(request)
return proxy_view(context, request)

config.add_view(my_wrapper)

The view object provided should be one of the following:

•A function or another non-class callable object that accepts a request as a single positional
argument and which returns a response object.

•A function or other non-class callable object that accepts two positional arguments,
context, request and which returns a response object.

•A class which accepts a single positional argument in its constructor named request,
and which has a __call__ method that accepts no arguments that returns a response
object.

•A class which accepts two positional arguments named context, request, and
which has a __call__ method that accepts no arguments that returns a response object.

•A dotted Python name which refers to any of the kinds of objects above.

This API returns a callable which accepts the arguments context, request and which
returns the result of calling the provided view object.

The attr keyword argument is most useful when the view object is a class. It names the
method that should be used as the callable. If attr is not provided, the attribute effectively
defaults to __call__. See Defining a View Callable as a Class for more information.

The renderer keyword argument should be a renderer name. If supplied, it will cause
the returned callable to use a renderer to convert the user-supplied view result to a response
object. If a renderer argument is not supplied, the user-supplied view must itself return a
response object.

make_wsgi_app()
Commits any pending configuration statements, sends a
pyramid.events.ApplicationCreated event to all listeners, adds this config-
uration’s registry to pyramid.config.global_registries, and returns a Pyramid
WSGI application representing the committed configuration state.

488

override_asset(to_override, override_with, _override=None)
Add a Pyramid asset override to the current configuration state.

to_override is a asset specification to the asset being overridden.

override_with is a asset specification to the asset that is performing the override.

See Static Assets for more information about asset overrides.

scan(package=None, categories=None, onerror=None, **kw)
Scan a Python package and any of its subpackages for objects marked with configuration
decoration such as pyramid.view.view_config. Any decorated object found will in-
fluence the current configuration state.

The package argument should be a Python package or module object (or a dotted Python
name which refers to such a package or module). If package is None, the package of the
caller is used.

The categories argument, if provided, should be the Venusian ‘scan categories’ to
use during scanning. Providing this argument is not often necessary; specifying scan
categories is an extremely advanced usage. By default, categories is None which
will execute all Venusian decorator callbacks including Pyramid-related decorators such as
pyramid.view.view_config. See the Venusian documentation for more information
about limiting a scan by using an explicit set of categories.

The onerror argument, if provided, should be a Venusian onerror callback function. The
onerror function is passed to venusian.Scanner.scan() to influence error behavior
when an exception is raised during the scanning process. See the Venusian documentation for
more information about onerror callbacks.

To perform a scan, Pyramid creates a Venusian Scanner object. The kw argument rep-
resents a set of keyword arguments to pass to the Venusian Scanner object’s construc-
tor. See the venusian documentation (its Scanner class) for more information about the
constructor. By default, the only keyword arguments passed to the Scanner constructor are
{’config’:self} where self is this configurator object. This services the requirement
of all built-in Pyramid decorators, but extension systems may require additional arguments.
Providing this argument is not often necessary; it’s an advanced usage.

the **kw argument is new in Pyramid 1.1

489

42. PYRAMID.CONFIG

set_locale_negotiator(negotiator)
Set the locale negotiator for this application. The locale negotiator is a callable which ac-
cepts a request object and which returns a locale name. The negotiator argument should
be the locale negotiator implementation or a dotted Python name which refers to such an
implementation.

Later calls to this method override earlier calls; there can be only one locale negotiator active
at a time within an application. See Activating Translation for more information.

Using the locale_negotiator argument to the
pyramid.config.Configurator constructor can be used to achieve the same
purpose.

set_default_permission(permission)
Set the default permission to be used by all subsequent view configuration registrations.
permission should be a permission string to be used as the default permission. An ex-
ample of a permission string:’view’. Adding a default permission makes it unnecessary to
protect each view configuration with an explicit permission, unless your application policy
requires some exception for a particular view.

If a default permission is not set, views represented by view configuration registrations which
do not explicitly declare a permission will be executable by entirely anonymous users (any
authorization policy is ignored).

Later calls to this method override will conflict with earlier calls; there can be only one default
permission active at a time within an application.

If a default permission is in effect, view configurations meant to create a truly anony-
mously accessible view (even exception view views) must use the value of the permis-
sion importable as pyramid.security.NO_PERMISSION_REQUIRED. When this
string is used as the permission for a view configuration, the default permission is
ignored, and the view is registered, making it available to all callers regardless of their
credentials.

See also Setting a Default Permission.

Using the default_permission argument to the
pyramid.config.Configurator constructor can be used to achieve the same
purpose.

490

set_session_factory(session_factory)
Configure the application with a session factory. If this method is called, the
session_factory argument must be a session factory callable or a dotted Python name
to that factory.

Using the session_factory argument to the
pyramid.config.Configurator constructor can be used to achieve the same
purpose.

set_request_factory(factory)
The object passed as factory should be an object (or a dotted Python name which refers to
an object) which will be used by the Pyramid router to create all request objects. This factory
object must have the same methods and attributes as the pyramid.request.Request
class (particularly __call__, and blank).

Using the request_factory argument to the
pyramid.config.Configurator constructor can be used to achieve the same
purpose.

set_root_factory(factory)
Add a root factory to the current configuration state. If the factory argument is None a
default root factory will be registered.

Using the root_factory argument to the pyramid.config.Configurator
constructor can be used to achieve the same purpose.

set_view_mapper(mapper)
Setting a view mapper makes it possible to make use of view callable objects which imple-
ment different call signatures than the ones supported by Pyramid as described in its narrative
documentation.

The mapper should argument be an object implementing
pyramid.interfaces.IViewMapperFactory or a dotted Python name to such
an object. The provided mapper will become the default view mapper to be used by all
subsequent view configuration registrations.

See also Using a View Mapper.

491

42. PYRAMID.CONFIG

Using the default_view_mapper argument to the
pyramid.config.Configurator constructor can be used to achieve the same
purpose.

set_authentication_policy(policy)
Override the Pyramid authentication policy in the current configuration. The policy argu-
ment must be an instance of an authentication policy or a dotted Python name that points at
an instance of an authentication policy.

Using the authentication_policy argument to the
pyramid.config.Configurator constructor can be used to achieve the same
purpose.

set_authorization_policy(policy)
Override the Pyramid authorization policy in the current configuration. The policy argu-
ment must be an instance of an authorization policy or a dotted Python name that points at an
instance of an authorization policy.

Using the authorization_policy argument to the
pyramid.config.Configurator constructor can be used to achieve the same
purpose.

testing_securitypolicy(userid=None, groupids=(), permissive=True)
Unit/integration testing helper: Registers a pair of faux Pyramid security policies: a authenti-
cation policy and a authorization policy.

The behavior of the registered authorization policy depends on the permissive argument.
If permissive is true, a permissive authorization policy is registered; this policy allows
all access. If permissive is false, a nonpermissive authorization policy is registered; this
policy denies all access.

The behavior of the registered authentication policy depends on the values provided
for the userid and groupids argument. The authentication policy will return the
userid identifier implied by the userid argument and the group ids implied by the
groupids argument when the pyramid.security.authenticated_userid() or
pyramid.security.effective_principals() APIs are used.

This function is most useful when testing code that uses
the APIs named pyramid.security.has_permission(),
pyramid.security.authenticated_userid(), pyramid.security.effective_principals(),
and pyramid.security.principals_allowed_by_permission().

492

testing_resources(resources)
Unit/integration testing helper: registers a dictionary of resource objects that can be resolved
via the pyramid.traversal.find_resource() API.

The pyramid.traversal.find_resource() API is called with a path as one
of its arguments. If the dictionary you register when calling this method con-
tains that path as a string key (e.g. /foo/bar or foo/bar), the correspond-
ing value will be returned to find_resource (and thus to your code) when
pyramid.traversal.find_resource() is called with an equivalent path string or
tuple.

testing_add_subscriber(event_iface=None)
Unit/integration testing helper: Registers a subscriber which listens for events of the type
event_iface. This method returns a list object which is appended to by the subscriber
whenever an event is captured.

When an event is dispatched that matches the value implied by the event_iface
argument, that event will be appended to the list. You can then compare the
values in the list to expected event notifications. This method is useful when
testing code that wants to call pyramid.registry.Registry.notify(), or
zope.component.event.dispatch().

The default value of event_iface (None) implies a subscriber registered for any kind of
event.

testing_add_renderer(path, renderer=None)
Unit/integration testing helper: register a renderer at path (usually a relative filename
ala templates/foo.pt or an asset specification) and return the renderer object. If
the renderer argument is None, a ‘dummy’ renderer will be used. This function is
useful when testing code that calls the pyramid.renderers.render() function or
pyramid.renderers.render_to_response() function or any other render_*
or get_* API of the pyramid.renderers module.

Note that calling this method for with a path argument representing a renderer factory type
(e.g. for foo.pt usually implies the chameleon_zpt renderer factory) clobbers any ex-
isting renderer factory registered for that type.

This method is also available under the alias testing_add_template (an older
name for it).

493

42. PYRAMID.CONFIG

set_forbidden_view(view=None, attr=None, renderer=None, wrapper=None)
Add a default forbidden view to the current configuration state.

This method has been deprecated in Pyramid 1.0. Do not use it for new development;
it should only be used to support older code bases which depend upon it. See Changing
the Forbidden View to see how a forbidden view should be registered in new projects.

The view argument should be a view callable or a dotted Python name which refers to a view
callable.

The attr argument should be the attribute of the view callable used to retrieve the response
(see the add_view method’s attr argument for a description).

The renderer argument should be the name of (or path to) a renderer used to gener-
ate a response for this view (see the pyramid.config.Configurator.add_view()
method’s renderer argument for information about how a configurator relates to a ren-
derer).

The wrapper argument should be the name of another view which will wrap this view when
rendered (see the add_view method’s wrapper argument for a description).

set_notfound_view(view=None, attr=None, renderer=None, wrapper=None)
Add a default not found view to the current configuration state.

This method has been deprecated in Pyramid 1.0. Do not use it for new development;
it should only be used to support older code bases which depend upon it. See Changing
the Not Found View to see how a not found view should be registered in new projects.

The view argument should be a view callable or a dotted Python name which refers to a view
callable.

The attr argument should be the attribute of the view callable used to retrieve the response
(see the add_view method’s attr argument for a description).

The renderer argument should be the name of (or path to) a renderer used to gener-
ate a response for this view (see the pyramid.config.Configurator.add_view()
method’s renderer argument for information about how a configurator relates to a ren-
derer).

The wrapper argument should be the name of another view which will wrap this view when
rendered (see the add_view method’s wrapper argument for a description).

494

set_renderer_globals_factory(factory, warn=True)
The object passed as factory should be an callable (or a dotted Python name which refers
to an callable) that will be used by the Pyramid rendering machinery as a renderers global
factory (see Adding Renderer Globals (Deprecated)).

The factory callable must accept a single argument named system (which will be a dic-
tionary) and it must return a dictionary. When an application uses a renderer, the factory’s
return dictionary will be merged into the system dictionary, and therefore will be made
available to the code which uses the renderer.

This method is deprecated as of Pyramid 1.1.

Using the renderer_globals_factory argument to the
pyramid.config.Configurator constructor can be used to achieve the same
purpose.

global_registries
The set of registries that have been created for Pyramid applications, one per each call to
pyramid.config.Configurator.make_wsgi_app() in the current process. The object
itself supports iteration and has a last property containing the last registry loaded.

The registries contained in this object are stored as weakrefs, thus they will only exist for the
lifetime of the actual applications for which they are being used.

495

42. PYRAMID.CONFIG

496

CHAPTER

FORTYTHREE

PYRAMID.EVENTS

43.1 Functions

subscriber(*ifaces)
Decorator activated via a scan which treats the function being decorated as an event subscriber for
the set of interfaces passed as *ifaces to the decorator constructor.

For example:

from pyramid.events import NewRequest
from pyramid.events import subscriber

@subscriber(NewRequest)
def mysubscriber(event):

event.request.foo = 1

More than one event type can be passed as a construtor argument. The decorated subscriber will be
called for each event type.

from pyramid.events import NewRequest, NewResponse
from pyramid.events import subscriber

@subscriber(NewRequest, NewResponse)
def mysubscriber(event):

print event

When the subscriber decorator is used without passing an arguments, the function it decorates
is called for every event sent:

497

43. PYRAMID.EVENTS

from pyramid.events import subscriber

@subscriber()
def mysubscriber(event):

print event

This method will have no effect until a scan is performed against the package or module which
contains it, ala:

from pyramid.config import Configurator
config = Configurator()
config.scan(’somepackage_containing_subscribers’)

43.2 Event Types

class ApplicationCreated(app)
An instance of this class is emitted as an event when the
pyramid.config.Configurator.make_wsgi_app() is called. The instance has
an attribute, app, which is an instance of the router that will handle WSGI requests. This class
implements the pyramid.interfaces.IApplicationCreated interface.

For backwards compatibility purposes, this class can also be imported as
pyramid.events.WSGIApplicationCreatedEvent. This was the name of the event
class before Pyramid 1.0.

class NewRequest(request)
An instance of this class is emitted as an event whenever Pyramid begins to process a new re-
quest. The even instance has an attribute, request, which is a request object. This event class
implements the pyramid.interfaces.INewRequest interface.

class ContextFound(request)
An instance of this class is emitted as an event after the Pyramid router finds a context object (after it
performs traversal) but before any view code is executed. The instance has an attribute, request,
which is the request object generated by Pyramid.

Notably, the request object will have an attribute named context, which is the context that will
be provided to the view which will eventually be called, as well as other attributes attached by
context-finding code.

498

43.2. EVENT TYPES

This class implements the pyramid.interfaces.IContextFound interface.

As of Pyramid 1.0, for backwards compatibility purposes, this event may also be imported
as pyramid.events.AfterTraversal.

class NewResponse(request, response)
An instance of this class is emitted as an event whenever any Pyramid view or exception view returns
a response.

The instance has two attributes:request, which is the request which caused the response, and
response, which is the response object returned by a view or renderer.

If the response was generated by an exception view, the request will have an attribute named
exception, which is the exception object which caused the exception view to be executed. If the
response was generated by a ‘normal’ view, this attribute of the request will be None.

This event will not be generated if a response cannot be created due to an exception that is not
caught by an exception view (no response is created under this circumstace).

This class implements the pyramid.interfaces.INewResponse interface.

Postprocessing a response is usually better handled in a WSGI middleware component than
in subscriber code that is called by a pyramid.interfaces.INewResponse event. The
pyramid.interfaces.INewResponse event exists almost purely for symmetry with the
pyramid.interfaces.INewRequest event.

class BeforeRender(system, rendering_val=None)
Subscribers to this event may introspect the and modify the set of renderer globals before they are
passed to a renderer. This event object iself has a dictionary-like interface that can be used for this
purpose. For example:

from repoze.events import subscriber
from pyramid.events import BeforeRender

@subscriber(BeforeRender)
def add_global(event):

event[’mykey’] = ’foo’

499

43. PYRAMID.EVENTS

An object of this type is sent as an event just before a renderer is invoked
(but after the – deprecated – application-level renderer globals factory added via
pyramid.config.Configurator.set_renderer_globals_factory, if any,
has injected its own keys into the renderer globals dictionary).

If a subscriber adds a key via __setitem__ or that already exists in the renderer globals dictio-
nary, it will overwrite an older value that is already in the globals dictionary. This can be prob-
lematic because event subscribers to the BeforeRender event do not possess any relative ordering.
For maximum interoperability with other third-party subscribers, if you write an event subscriber
meant to be used as a BeforeRender subscriber, your subscriber code will need to (using .get
or __contains__ of the event object) ensure no value already exists in the renderer globals
dictionary before setting an overriding value.

The event has an additional attribute named rendering_val. This is the (non-system) value
returned by a view or passed to render* as value. This feature is new in Pyramid 1.2.

See also pyramid.interfaces.IBeforeRender.

update(E, **F)
Update D from dict/iterable E and F. If E has a .keys() method, does: for k in E: D[k] = E[k]
If E lacks .keys() method, does: for (k, v) in E: D[k] = v. In either case, this is followed by:
for k in F: D[k] = F[k].

clear
D.clear() -> None. Remove all items from D.

copy
D.copy() -> a shallow copy of D

static fromkeys()
dict.fromkeys(S[,v]) -> New dict with keys from S and values equal to v. v defaults to None.

get
D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.

has_key
D.has_key(k) -> True if D has a key k, else False

items
D.items() -> list of D’s (key, value) pairs, as 2-tuples

iteritems
D.iteritems() -> an iterator over the (key, value) items of D

500

43.2. EVENT TYPES

iterkeys
D.iterkeys() -> an iterator over the keys of D

itervalues
D.itervalues() -> an iterator over the values of D

keys
D.keys() -> list of D’s keys

pop
D.pop(k[,d]) -> v, remove specified key and return the corresponding value. If key is not
found, d is returned if given, otherwise KeyError is raised

popitem
D.popitem() -> (k, v), remove and return some (key, value) pair as a 2-tuple; but raise KeyEr-
ror if D is empty.

setdefault
D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D

values
D.values() -> list of D’s values

See Using Events for more information about how to register code which subscribes to these events.

501

43. PYRAMID.EVENTS

502

CHAPTER

FORTYFOUR

PYRAMID.EXCEPTIONS

Forbidden
alias of HTTPForbidden

NotFound
alias of HTTPNotFound

class ConfigurationError
Raised when inappropriate input values are supplied to an API method of a Configurator

class URLDecodeError
This exception is raised when Pyramid cannot successfully decode a URL or a URL path segment.
This exception it behaves just like the Python builtin UnicodeDecodeError. It is a subclass of
the builtin UnicodeDecodeError exception only for identity purposes, mostly so an exception
view can be registered when a URL cannot be decoded.

503

44. PYRAMID.EXCEPTIONS

504

CHAPTER

FORTYFIVE

PYRAMID.HTTPEXCEPTIONS

45.1 HTTP Exceptions

This module contains Pyramid HTTP exception classes. Each class relates to a single HTTP status code.
Each class is a subclass of the HTTPException. Each exception class is also a response object.

Each exception class has a status code according to RFC 2068: codes with 100-300 are not really errors;
400s are client errors, and 500s are server errors.

Exception

HTTPException

HTTPOk

• 200 - HTTPOk

• 201 - HTTPCreated

• 202 - HTTPAccepted

• 203 - HTTPNonAuthoritativeInformation

• 204 - HTTPNoContent

• 205 - HTTPResetContent

505

http://www.ietf.org/rfc/rfc2068.txt

45. PYRAMID.HTTPEXCEPTIONS

• 206 - HTTPPartialContent

HTTPRedirection

• 300 - HTTPMultipleChoices

• 301 - HTTPMovedPermanently

• 302 - HTTPFound

• 303 - HTTPSeeOther

• 304 - HTTPNotModified

• 305 - HTTPUseProxy

• 306 - Unused (not implemented, obviously)

• 307 - HTTPTemporaryRedirect

HTTPError

HTTPClientError

• 400 - HTTPBadRequest

• 401 - HTTPUnauthorized

• 402 - HTTPPaymentRequired

• 403 - HTTPForbidden

• 404 - HTTPNotFound

• 405 - HTTPMethodNotAllowed

• 406 - HTTPNotAcceptable

• 407 - HTTPProxyAuthenticationRequired

• 408 - HTTPRequestTimeout

• 409 - HTTPConflict

506

45.1. HTTP EXCEPTIONS

• 410 - HTTPGone

• 411 - HTTPLengthRequired

• 412 - HTTPPreconditionFailed

• 413 - HTTPRequestEntityTooLarge

• 414 - HTTPRequestURITooLong

• 415 - HTTPUnsupportedMediaType

• 416 - HTTPRequestRangeNotSatisfiable

• 417 - HTTPExpectationFailed

• 422 - HTTPUnprocessableEntity

• 423 - HTTPLocked

• 424 - HTTPFailedDependency

HTTPServerError

• 500 - HTTPInternalServerError

• 501 - HTTPNotImplemented

• 502 - HTTPBadGateway

• 503 - HTTPServiceUnavailable

• 504 - HTTPGatewayTimeout

• 505 - HTTPVersionNotSupported

• 507 - HTTPInsufficientStorage

HTTP exceptions are also response objects, thus they accept most of the same parameters that can be
passed to a regular Response. Each HTTP exception also has the following attributes:

code the HTTP status code for the exception

title remainder of the status line (stuff after the code)

507

45. PYRAMID.HTTPEXCEPTIONS

explanation a plain-text explanation of the error message that is not subject to environ-
ment or header substitutions; it is accessible in the template via ${explanation}

detail a plain-text message customization that is not subject to environment or header
substitutions; accessible in the template via ${detail}

body_template a String.template-format content fragment used for environment
and header substitution; the default template includes both the explanation and further
detail provided in the message.

Each HTTP exception accepts the following parameters, any others will be forwarded to its Response
superclass:

detail a plain-text override of the default detail

headers a list of (k,v) header pairs

comment a plain-text additional information which is usually stripped/hidden for end-users

body_template a string.Template object containing a content fragment in HTML
that frames the explanation and further detail

body a string that will override the body_template and be used as the body of the
response.

Substitution of response headers into template values is always performed. Substitution of WSGI envi-
ronment values is performed if a request is passed to the exception’s constructor.

The subclasses of _HTTPMove (HTTPMultipleChoices, HTTPMovedPermanently,
HTTPFound, HTTPSeeOther, HTTPUseProxy and HTTPTemporaryRedirect) are redi-
rections that require a Location field. Reflecting this, these subclasses have one additional keyword
argument: location, which indicates the location to which to redirect.

status_map
A mapping of integer status code to exception class (eg. the integer “401” maps to
pyramid.httpexceptions.HTTPUnauthorized).

exception_response(status_code, **kw)
Creates an HTTP exception based on a status code. Example:

raise exception_response(404) # raises an HTTPNotFound exception.

The values passed as kw are provided to the exception’s constructor.

508

45.1. HTTP EXCEPTIONS

class HTTPException
Base class for all exception response objects.

class HTTPOk(detail=None, headers=None, comment=None, body_template=None, **kw)
Base class for exceptions with status codes in the 200s (successful responses)

code: 200, title: OK

class HTTPRedirection(detail=None, headers=None, comment=None,
body_template=None, **kw)

base class for exceptions with status codes in the 300s (redirections)

This is an abstract base class for 3xx redirection. It indicates that further action needs to be taken
by the user agent in order to fulfill the request. It does not necessarly signal an error condition.

class HTTPError(detail=None, headers=None, comment=None, body_template=None, **kw)
base class for exceptions with status codes in the 400s and 500s

This is an exception which indicates that an error has occurred, and that any work in progress should
not be committed.

class HTTPClientError(detail=None, headers=None, comment=None,
body_template=None, **kw)

base class for the 400s, where the client is in error

This is an error condition in which the client is presumed to be in-error. This is an expected problem,
and thus is not considered a bug. A server-side traceback is not warranted. Unless specialized, this
is a ‘400 Bad Request’

class HTTPServerError(detail=None, headers=None, comment=None,
body_template=None, **kw)

base class for the 500s, where the server is in-error

This is an error condition in which the server is presumed to be in-error. Unless specialized, this is
a ‘500 Internal Server Error’.

class HTTPCreated(detail=None, headers=None, comment=None, body_template=None,
**kw)

subclass of HTTPOk

This indicates that request has been fulfilled and resulted in a new resource being created.

code: 201, title: Created

509

45. PYRAMID.HTTPEXCEPTIONS

class HTTPAccepted(detail=None, headers=None, comment=None, body_template=None,
**kw)

subclass of HTTPOk

This indicates that the request has been accepted for processing, but the processing has not been
completed.

code: 202, title: Accepted

class HTTPNonAuthoritativeInformation(detail=None, headers=None, com-
ment=None, body_template=None, **kw)

subclass of HTTPOk

This indicates that the returned metainformation in the entity-header is not the definitive set as
available from the origin server, but is gathered from a local or a third-party copy.

code: 203, title: Non-Authoritative Information

class HTTPNoContent(detail=None, headers=None, comment=None, body_template=None,
**kw)

subclass of HTTPOk

This indicates that the server has fulfilled the request but does not need to return an entity-body,
and might want to return updated metainformation.

code: 204, title: No Content

class HTTPResetContent(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPOk

This indicates that the the server has fulfilled the request and the user agent SHOULD reset the
document view which caused the request to be sent.

code: 205, title: Reset Content

class HTTPPartialContent(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPOk

This indicates that the server has fulfilled the partial GET request for the resource.

code: 206, title: Partial Content

510

45.1. HTTP EXCEPTIONS

class HTTPMultipleChoices(location=’‘, detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of _HTTPMove

This indicates that the requested resource corresponds to any one of a set of representations, each
with its own specific location, and agent-driven negotiation information is being provided so that
the user can select a preferred representation and redirect its request to that location.

code: 300, title: Multiple Choices

class HTTPMovedPermanently(location=’‘, detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of _HTTPMove

This indicates that the requested resource has been assigned a new permanent URI and any future
references to this resource SHOULD use one of the returned URIs.

code: 301, title: Moved Permanently

class HTTPFound(location=’‘, detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of _HTTPMove

This indicates that the requested resource resides temporarily under a different URI.

code: 302, title: Found

class HTTPSeeOther(location=’‘, detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of _HTTPMove

This indicates that the response to the request can be found under a different URI and SHOULD be
retrieved using a GET method on that resource.

code: 303, title: See Other

class HTTPNotModified(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPRedirection

This indicates that if the client has performed a conditional GET request and access is allowed, but
the document has not been modified, the server SHOULD respond with this status code.

code: 304, title: Not Modified

511

45. PYRAMID.HTTPEXCEPTIONS

class HTTPUseProxy(location=’‘, detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of _HTTPMove

This indicates that the requested resource MUST be accessed through the proxy given by the Loca-
tion field.

code: 305, title: Use Proxy

class HTTPTemporaryRedirect(location=’‘, detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of _HTTPMove

This indicates that the requested resource resides temporarily under a different URI.

code: 307, title: Temporary Redirect

class HTTPBadRequest(detail=None, headers=None, comment=None, body_template=None,
**kw)

class HTTPUnauthorized(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates that the request requires user authentication.

code: 401, title: Unauthorized

class HTTPPaymentRequired(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

code: 402, title: Payment Required

class HTTPForbidden(detail=None, headers=None, comment=None, body_template=None,
result=None, **kw)

subclass of HTTPClientError

This indicates that the server understood the request, but is refusing to fulfill it.

code: 403, title: Forbidden

Raise this exception within view code to immediately return the forbidden view to the invoking
user. Usually this is a basic 403 page, but the forbidden view can be customized as necessary. See

512

45.1. HTTP EXCEPTIONS

Changing the Forbidden View. A Forbidden exception will be the context of a Forbidden
View.

This exception’s constructor treats two arguments specially. The first argument, detail,
should be a string. The value of this string will be used as the message attribute of the
exception object. The second special keyword argument, result is usually an instance of
pyramid.security.Denied or pyramid.security.ACLDenied each of which indi-
cates a reason for the forbidden error. However, result is also permitted to be just a plain boolean
False object or None. The result value will be used as the result attribute of the exception
object. It defaults to None.

The Forbidden View can use the attributes of a Forbidden exception as necessary to provide ex-
tended information in an error report shown to a user.

class HTTPNotFound(detail=None, headers=None, comment=None, body_template=None,
**kw)

subclass of HTTPClientError

This indicates that the server did not find anything matching the Request-URI.

code: 404, title: Not Found

Raise this exception within view code to immediately return the Not Found view to the invoking
user. Usually this is a basic 404 page, but the Not Found view can be customized as necessary. See
Changing the Not Found View.

This exception’s constructor accepts a detail argument (the first argument), which should be a
string. The value of this string will be available as the message attribute of this exception, for
availability to the Not Found View.

class HTTPMethodNotAllowed(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates that the method specified in the Request-Line is not allowed for the resource identi-
fied by the Request-URI.

code: 405, title: Method Not Allowed

class HTTPNotAcceptable(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates the resource identified by the request is only capable of generating response enti-
ties which have content characteristics not acceptable according to the accept headers sent in the
request.

code: 406, title: Not Acceptable

513

45. PYRAMID.HTTPEXCEPTIONS

class HTTPProxyAuthenticationRequired(detail=None, headers=None, com-
ment=None, body_template=None, **kw)

subclass of HTTPClientError

This is similar to 401, but indicates that the client must first authenticate itself with the proxy.

code: 407, title: Proxy Authentication Required

class HTTPRequestTimeout(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates that the client did not produce a request within the time that the server was prepared
to wait.

code: 408, title: Request Timeout

class HTTPConflict(detail=None, headers=None, comment=None, body_template=None,
**kw)

subclass of HTTPClientError

This indicates that the request could not be completed due to a conflict with the current state of the
resource.

code: 409, title: Conflict

class HTTPGone(detail=None, headers=None, comment=None, body_template=None, **kw)
subclass of HTTPClientError

This indicates that the requested resource is no longer available at the server and no forwarding
address is known.

code: 410, title: Gone

class HTTPLengthRequired(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates that the the server refuses to accept the request without a defined Content-Length.

code: 411, title: Length Required

514

45.1. HTTP EXCEPTIONS

class HTTPPreconditionFailed(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates that the precondition given in one or more of the request-header fields evaluated to
false when it was tested on the server.

code: 412, title: Precondition Failed

class HTTPRequestEntityTooLarge(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates that the server is refusing to process a request because the request entity is larger
than the server is willing or able to process.

code: 413, title: Request Entity Too Large

class HTTPRequestURITooLong(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates that the server is refusing to service the request because the Request-URI is longer
than the server is willing to interpret.

code: 414, title: Request-URI Too Long

class HTTPUnsupportedMediaType(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates that the server is refusing to service the request because the entity of the request is in
a format not supported by the requested resource for the requested method.

code: 415, title: Unsupported Media Type

class HTTPRequestRangeNotSatisfiable(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

The server SHOULD return a response with this status code if a request included a Range request-
header field, and none of the range-specifier values in this field overlap the current extent of the
selected resource, and the request did not include an If-Range request-header field.

code: 416, title: Request Range Not Satisfiable

515

45. PYRAMID.HTTPEXCEPTIONS

class HTTPExpectationFailed(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indidcates that the expectation given in an Expect request-header field could not be met by this
server.

code: 417, title: Expectation Failed

class HTTPUnprocessableEntity(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates that the server is unable to process the contained instructions. Only for WebDAV.

code: 422, title: Unprocessable Entity

class HTTPLocked(detail=None, headers=None, comment=None, body_template=None,
**kw)

subclass of HTTPClientError

This indicates that the resource is locked. Only for WebDAV

code: 423, title: Locked

class HTTPFailedDependency(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates that the method could not be performed because the requested action depended on
another action and that action failed. Only for WebDAV.

code: 424, title: Failed Dependency

class HTTPInternalServerError(detail=None, headers=None, comment=None,
body_template=None, **kw)

class HTTPNotImplemented(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPServerError

This indicates that the server does not support the functionality required to fulfill the request.

code: 501, title: Not Implemented

516

45.1. HTTP EXCEPTIONS

class HTTPBadGateway(detail=None, headers=None, comment=None, body_template=None,
**kw)

subclass of HTTPServerError

This indicates that the server, while acting as a gateway or proxy, received an invalid response from
the upstream server it accessed in attempting to fulfill the request.

code: 502, title: Bad Gateway

class HTTPServiceUnavailable(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPServerError

This indicates that the server is currently unable to handle the request due to a temporary overload-
ing or maintenance of the server.

code: 503, title: Service Unavailable

class HTTPGatewayTimeout(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPServerError

This indicates that the server, while acting as a gateway or proxy, did not receive a timely response
from the upstream server specified by the URI (e.g. HTTP, FTP, LDAP) or some other auxiliary
server (e.g. DNS) it needed to access in attempting to complete the request.

code: 504, title: Gateway Timeout

class HTTPVersionNotSupported(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPServerError

This indicates that the server does not support, or refuses to support, the HTTP protocol version
that was used in the request message.

code: 505, title: HTTP Version Not Supported

class HTTPInsufficientStorage(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPServerError

This indicates that the server does not have enough space to save the resource.

code: 507, title: Insufficient Storage

517

45. PYRAMID.HTTPEXCEPTIONS

518

CHAPTER

FORTYSIX

PYRAMID.I18N

class TranslationString
The constructor for a translation string. A translation string is a Unicode-like object that has some
extra metadata.

This constructor accepts one required argument named msgid. msgid must be the message iden-
tifier for the translation string. It must be a unicode object or a str object encoded in the default
system encoding.

Optional keyword arguments to this object’s constructor include domain, default, and
mapping.

domain represents the translation domain. By default, the translation domain is None, indicating
that this translation string is associated with the default translation domain (usually messages).

default represents an explicit default text for this translation string. Default text appears when
the translation string cannot be translated. Usually, the msgid of a translation string serves double
duty as as its default text. However, using this option you can provide a different default text for this
translation string. This feature is useful when the default of a translation string is too complicated or
too long to be used as a message identifier. If default is provided, it must be a unicode object
or a str object encoded in the default system encoding (usually means ASCII). If default is
None (its default value), the msgid value used by this translation string will be assumed to be the
value of default.

mapping, if supplied, must be a dictionary-like object which represents the replacement values
for any translation string replacement marker instances found within the msgid (or default)
value of this translation string.

519

46. PYRAMID.I18N

After a translation string is constructed, it behaves like most other unicode objects; its msgid
value will be displayed when it is treated like a unicode object. Only when its ugettext
method is called will it be translated.

Its default value is available as the default attribute of the object, its translation domain is
available as the domain attribute, and the mapping is available as the mapping attribute. The
object otherwise behaves much like a Unicode string.

class TranslationStringFactory
Create a factory which will generate translation strings without requiring that each call to the factory
be passed a domain value. A single argument is passed to this class’ constructor: domain. This
value will be used as the domain values of translationstring.TranslationString
objects generated by the __call__ of this class. The msgid, mapping, and default values
provided to the __call__ method of an instance of this class have the meaning as described by
the constructor of the translationstring.TranslationString

class Localizer(locale_name, translations)

An object providing translation and pluralizations related to the current request’s
locale name. A pyramid.i18n.Localizer object is created using the
pyramid.i18n.get_localizer() function.

locale_name
The locale name for this localizer (e.g. en or en_US).

pluralize(singular, plural, n, domain=None, mapping=None)
Return a Unicode string translation by using two message identifier objects as a singular/plural
pair and an n value representing the number that appears in the message using gettext plural
forms support. The singular and plural objects passed may be translation strings or
unicode strings. n represents the number of elements. domain is the translation domain to
use to do the pluralization, and mapping is the interpolation mapping that should be used on
the result. Note that if the objects passed are translation strings, their domains and mappings
are ignored. The domain and mapping arguments must be used instead. If the domain is not
supplied, a default domain is used (usually messages).

Example:

num = 1
translated = localizer.pluralize(’Add ${num} item’,

’Add ${num} items’,
num,
mapping={’num’:num})

520

translate(tstring, domain=None, mapping=None)
Translate a translation string to the current language and interpolate any replacement mark-
ers in the result. The translate method accepts three arguments: tstring (required),
domain (optional) and mapping (optional). When called, it will translate the tstring
translation string to a unicode object using the current locale. If the current locale could
not be determined, the result of interpolation of the default value is returned. The optional
domain argument can be used to specify or override the domain of the tstring (useful
when tstring is a normal string rather than a translation string). The optional mapping
argument can specify or override the tstring interpolation mapping, useful when the
tstring argument is a simple string instead of a translation string.

Example:

from pyramid.18n import TranslationString
ts = TranslationString(’Add ${item}’, domain=’mypackage’,

mapping={’item’:’Item’})
translated = localizer.translate(ts)

Example:

translated = localizer.translate(’Add ${item}’, domain=’mypackage’,
mapping={’item’:’Item’})

get_localizer(request)
Retrieve a pyramid.i18n.Localizer object corresponding to the current request’s locale
name.

negotiate_locale_name(request)
Negotiate and return the locale name associated with the current request (never cached).

get_locale_name(request)
Return the locale name associated with the current request (possibly cached).

default_locale_negotiator(request)
The default locale negotiator. Returns a locale name or None.

•First, the negotiator looks for the _LOCALE_ attribute of the request object (possibly set by a
view or a listener for an event).

•Then it looks for the request.params[’_LOCALE_’] value.

•Then it looks for the request.cookies[’_LOCALE_’] value.

521

46. PYRAMID.I18N

•Finally, the negotiator returns None if the locale could not be determined via any of the
previous checks (when a locale negotiator returns None, it signifies that the default locale
name should be used.)

make_localizer(current_locale_name, translation_directories)
Create a pyramid.i18n.Localizer object corresponding to the provided locale name from
the translations found in the list of translation directories.

See Internationalization and Localization for more information about using Pyramid internationalization
and localization services within an application.

522

CHAPTER

FORTYSEVEN

PYRAMID.INTERFACES

47.1 Event-Related Interfaces

interface IApplicationCreated
Event issued when the pyramid.config.Configurator.make_wsgi_app()
method is called. See the documentation attached to
pyramid.events.ApplicationCreated for more information.

For backwards compatibility with Pyramid ver-
sions before 1.0, this interface can also be imported as
pyramid.interfaces.IWSGIApplicationCreatedEvent.

app
Created application

interface INewRequest
An event type that is emitted whenever Pyramid begins to process a new request. See the
documentation attached to pyramid.events.NewRequest for more information.

request
The request object

523

47. PYRAMID.INTERFACES

interface IContextFound
An event type that is emitted after Pyramid finds a context object but before it calls any
view code. See the documentation attached to pyramid.events.ContextFound
for more information.

For backwards compatibility with versions of Pyramid before 1.0, this event in-
terface can also be imported as pyramid.interfaces.IAfterTraversal.

request
The request object

interface INewResponse
An event type that is emitted whenever any Pyramid view returns a response. See the
documentation attached to pyramid.events.NewResponse for more informa-
tion.

request
The request object

response
The response object

interface IBeforeRender
Extends: pyramid.interfaces.IDict

Subscribers to this event may introspect the and modify the set of renderer globals
before they are passed to a renderer. The event object itself provides a dictionary-
like interface for adding and removing renderer globals. The keys and values of the
dictionary are those globals. For example:

from repoze.events import subscriber
from pyramid.interfaces import IBeforeRender

@subscriber(IBeforeRender)
def add_global(event):

event[’mykey’] = ’foo’

See also Using The Before Render Event.

rendering_val
The value returned by a view or passed to a render method for this rendering.
This feature is new in Pyramid 1.2.

524

47.2. OTHER INTERFACES

47.2 Other Interfaces

interface IAuthenticationPolicy
An object representing a Pyramid authentication policy.

remember(request, principal, **kw)
Return a set of headers suitable for ‘remembering’ the principal named
principal when set in a response. An individual authentication policy and its
consumers can decide on the composition and meaning of **kw.

authenticated_userid(request)
Return the authenticated userid or None if no authenticated userid can be found.
This method of the policy should ensure that a record exists in whatever persistent
store is used related to the user (the user should not have been deleted); if a record
associated with the current id does not exist in a persistent store, it should return
None.

unauthenticated_userid(request)
Return the unauthenticated userid. This method performs the same duty as
authenticated_userid but is permitted to return the userid based only on
data present in the request; it needn’t (and shouldn’t) check any persistent store to
ensure that the user record related to the request userid exists.

effective_principals(request)
Return a sequence representing the effective principals including the userid and
any groups belonged to by the current user, including ‘system’ groups such as
Everyone and Authenticated.

forget(request)
Return a set of headers suitable for ‘forgetting’ the current user on subsequent
requests.

interface IAuthorizationPolicy
An object representing a Pyramid authorization policy.

principals_allowed_by_permission(context, permission)
Return a set of principal identifiers allowed by the permission in
context. This behavior is optional; if you choose to not imple-
ment it you should define this method as something which raises a
NotImplementedError. This method will only be called when the
pyramid.security.principals_allowed_by_permission API is
used.

525

47. PYRAMID.INTERFACES

permits(context, principals, permission)
Return True if any of the principals is allowed the permission in the
current context, else return False

interface IExceptionResponse
Extends: pyramid.interfaces.IException,
pyramid.interfaces.IResponse

An interface representing a WSGI response which is also an exception ob-
ject. Register an exception view using this interface as a context to
apply the registered view for all exception types raised by Pyramid inter-
nally (any exception that inherits from pyramid.response.Response,
including pyramid.httpexceptions.HTTPNotFound and
pyramid.httpexceptions.HTTPForbidden).

prepare(environ)
Prepares the response for being called as a WSGI application

interface IRoute
Interface representing the type of object returned from
IRoutesMapper.get_route

name
The route name

pattern
The route pattern

factory
The root factory used by the Pyramid router when this route matches (or None)

generate(kw)
Generate a URL based on filling in the dynamic segment markers in the pattern
using the kw dictionary provided.

pregenerator
This attribute should either be None or a callable object implementing the
IRoutePregenerator interface

predicates
A sequence of route predicate objects used to determine if a request matches this
route or not after basic pattern matching has been completed.

526

47.2. OTHER INTERFACES

match(path)
If the path passed to this function can be matched by the pattern of this route,
return a dictionary (the ‘matchdict’), which will contain keys representing the dy-
namic segment markers in the pattern mapped to values extracted from the pro-
vided path.

If the path passed to this function cannot be matched by the pattern of this
route, return None.

interface IRoutePregenerator

__call__(request, elements, kw)
A pregenerator is a function associated by a developer with a route. The pregen-
erator for a route is called by pyramid.request.Request.route_url()
in order to adjust the set of arguments passed to it by the user for special pur-
poses, such as Pylons ‘subdomain’ support. It will influence the URL returned by
route_url.

A pregenerator should return a two-tuple of (elements, kw) after examin-
ing the originals passed to this function, which are the arguments (request,
elements, kw). The simplest pregenerator is:

def pregenerator(request, elements, kw):
return elements, kw

You can employ a pregenerator by passing a pregenerator argument to the
pyramid.config.Configurator.add_route() function.

interface ISession
Extends: pyramid.interfaces.IDict

An interface representing a session (a web session object, usually accessed via
request.session.

Keys and values of a session must be pickleable.

invalidate()
Invalidate the session. The action caused by invalidate is implementation-
dependent, but it should have the effect of completely dissociating any data stored
in the session with the current request. It might set response values (such as one
which clears a cookie), or it might not.

527

47. PYRAMID.INTERFACES

flash(msg, queue=’‘, allow_duplicate=True)
Push a flash message onto the end of the flash queue represented by queue. An
alternate flash message queue can used by passing an optional queue, which must
be a string. If allow_duplicate is false, if the msg already exists in the queue,
it will not be readded.

created
Integer representing Epoch time when created.

changed()
Mark the session as changed. A user of a session should call this method after
he or she mutates a mutable object that is a value of the session (it should not be
required after mutating the session itself). For example, if the user has stored a dic-
tionary in the session under the key foo, and he or she does session[’foo’]
= {}, changed() needn’t be called. However, if subsequently he or she does
session[’foo’][’a’] = 1, changed() must be called for the sessioning
machinery to notice the mutation of the internal dictionary.

get_csrf_token()
Return a random cross-site request forgery protection token. It will be a string.
If a token was previously added to the session via new_csrf_token, that to-
ken will be returned. If no CSRF token was previously set into the session,
new_csrf_token will be called, which will create and set a token, and this
token will be returned.

peek_flash(queue=’‘)
Peek at a queue in the flash storage. The queue remains in flash storage after this
message is called. The queue is returned; it is a list of flash messages added by
pyramid.interfaces.ISession.flash()

new_csrf_token()
Create and set into the session a new, random cross-site request forgery protection
token. Return the token. It will be a string.

new
Boolean attribute. If True, the session is new.

pop_flash(queue=’‘)
Pop a queue from the flash storage. The queue is removed from flash storage after
this message is called. The queue is returned; it is a list of flash messages added
by pyramid.interfaces.ISession.flash()

interface ISessionFactory
An interface representing a factory which accepts a request object and returns an ISes-
sion object

528

47.2. OTHER INTERFACES

__call__(request)
Return an ISession object

interface IRendererInfo
An object implementing this interface is passed to every renderer factory constructor as
its only argument (conventionally named info)

name
The value passed by the user as the renderer name

package
The “current package” when the renderer configuration statement was found

settings
The deployment settings dictionary related to the current application

registry
The “current” application registry when the renderer was created

type
The renderer type name

interface ITemplateRenderer
Extends: pyramid.interfaces.IRenderer

implementation()
Return the object that the underlying templating system uses to render the template;
it is typically a callable that accepts arbitrary keyword arguments and returns a
string or unicode object

interface IViewMapperFactory

__call__(self, **kw)
Return an object which implements pyramid.interfaces.IViewMapper.
kw will be a dictionary containing view-specific arguments,
such as permission, predicates, attr, renderer,
and other items. An IViewMapperFactory is used by
pyramid.config.Configurator.add_view() to provide a plug-
point to extension developers who want to modify potential view callable
invocation signatures and response values.

interface IViewMapper

529

47. PYRAMID.INTERFACES

__call__(self, object)
Provided with an arbitrary object (a function, class, or instance), returns a
callable with the call signature (context, request). The callable re-
turned should itself return a Response object. An IViewMapper is returned by
pyramid.interfaces.IViewMapperFactory.

interface IDict

__delitem__(k)
Delete an item from the dictionary which is passed to the renderer as the renderer
globals dictionary.

setdefault(k, default=None)
Return the existing value for key k in the dictionary. If no value with k exists in
the dictionary, set the default value into the dictionary under the k name passed.
If a value already existed in the dictionary, return it. If a value did not exist in the
dictionary, return the default

__getitem__(k)
Return the value for key k from the dictionary or raise a KeyError if the key doesn’t
exist

__contains__(k)
Return True if key k exists in the dictionary.

keys()
Return a list of keys from the dictionary

items()
Return a list of [(k,v)] pairs from the dictionary

clear()
Clear all values from the dictionary

get(k, default=None)
Return the value for key k from the renderer dictionary, or the default if no such
value exists.

__setitem__(k, value)
Set a key/value pair into the dictionary

530

47.2. OTHER INTERFACES

pop(k, default=None)
Pop the key k from the dictionary and return its value. If k doesn’t exist, and default
is provided, return the default. If k doesn’t exist and default is not provided, raise
a KeyError.

update(d)
Update the renderer dictionary with another dictionary d.

__iter__()
Return an iterator over the keys of this dictionary

has_key(k)
Return True if key k exists in the dictionary.

values()
Return a list of values from the dictionary

itervalues()
Return an iterator of values from the dictionary

iteritems()
Return an iterator of (k,v) pairs from the dictionary

popitem()
Pop the item with key k from the dictionary and return it as a two-tuple (k, v). If k
doesn’t exist, raise a KeyError.

iterkeys()
Return an iterator of keys from the dictionary

interface IMultiDict
Extends: pyramid.interfaces.IDict

An ordered dictionary that can have multiple values for each key. A multidict adds
the methods getall, getone, mixed, extend add, and dict_of_lists to the
normal dictionary interface. A multidict data structure is used as request.POST,
request.GET, and request.params within an Pyramid application.

extend(other=None, **kwargs)
Add a set of keys and values, not overwriting any previous values. The other
structure may be a list of two-tuples or a dictionary. If **kwargs is passed, its
value will overwrite existing values.

531

47. PYRAMID.INTERFACES

getall(key)
Return a list of all values matching the key (may be an empty list)

add(key, value)
Add the key and value, not overwriting any previous value.

getone(key)
Get one value matching the key, raising a KeyError if multiple values were found.

dict_of_lists()
Returns a dictionary where each key is associated with a list of values.

mixed()
Returns a dictionary where the values are either single values, or a list of values
when a key/value appears more than once in this dictionary. This is similar to the
kind of dictionary often used to represent the variables in a web request.

interface IResponse
Represents a WSGI response using the WebOb response interface. Some attribute and
method documentation of this interface references RFC 2616.

This interface is most famously implemented by pyramid.response.Response
and the HTTP exception classes in pyramid.httpexceptions.

content_length
Gets and sets and deletes the Content-Length header. For more information on
Content-Length see RFC 2616 section 14.17. Converts using int.

status
The status string.

encode_content(encoding=’gzip’, lazy=False)
Encode the content with the given encoding (only gzip and identity are supported).

cache_expires
Get/set the Cache-Control and Expires headers. This sets the response to expire in
the number of seconds passed when set.

set_cookie(key, value=’‘, max_age=None, path=’/’, domain=None, se-
cure=False, httponly=False, comment=None, expires=None,
overwrite=False)

Set (add) a cookie for the response

532

http://www.w3.org/Protocols/rfc2616/

47.2. OTHER INTERFACES

vary
Gets and sets and deletes the Vary header. For more information on Vary see
section 14.44. Converts using list.

retry_after
Gets and sets and deletes the Retry-After header. For more information on Retry-
After see RFC 2616 section 14.37. Converts using HTTP date or delta seconds.

www_authenticate
Gets and sets and deletes the WWW-Authenticate header. For more information
on WWW-Authenticate see RFC 2616 section 14.47. Converts using ‘parse_auth’
and ‘serialize_auth’.

content_language
Gets and sets and deletes the Content-Language header. Converts using list. For
more information about Content-Language see RFC 2616 section 14.12.

etag
Gets and sets and deletes the ETag header. For more information on ETag see RFC
2616 section 14.19. Converts using Entity tag.

content_location
Gets and sets and deletes the Content-Location header. For more information on
Content-Location see RFC 2616 section 14.14.

server
Gets and sets and deletes the Server header. For more information on Server see
RFC216 section 14.38.

unset_cookie(key, strict=True)
Unset a cookie with the given name (remove it from the response).

pragma
Gets and sets and deletes the Pragma header. For more information on Pragma see
RFC 2616 section 14.32.

app_iter
Returns the app_iter of the response.

If body was set, this will create an app_iter from that body (a single-item list)

headers
The headers in a dictionary-like object

533

47. PYRAMID.INTERFACES

charset
Get/set the charset (in the Content-Type)

unicode_body
Get/set the unicode value of the body (using the charset of the Content-Type)

status_int
The status as an integer

conditional_response_app(environ, start_response)
Like the normal __call__ interface, but checks conditional headers:

•If-Modified-Since (304 Not Modified; only on GET, HEAD)
•If-None-Match (304 Not Modified; only on GET, HEAD)
•Range (406 Partial Content; only on GET, HEAD)

delete_cookie(key, path=’/’, domain=None)
Delete a cookie from the client. Note that path and domain must match how the
cookie was originally set. This sets the cookie to the empty string, and max_age=0
so that it should expire immediately.

content_range
Gets and sets and deletes the Content-Range header. For more information on
Content-Range see section 14.16. Converts using ContentRange object.

content_encoding
Gets and sets and deletes the Content-Encoding header. For more information
about Content-Encoding see RFC 2616 section 14.11.

__call__(environ, start_response)
WSGI call interface, should call the start_response callback and should return an
iterable

content_md5
Gets and sets and deletes the Content-MD5 header. For more information on
Content-MD5 see RFC 2616 section 14.14.

content_disposition
Gets and sets and deletes the Content-Disposition header. For more information on
Content-Disposition see RFC 2616 section 19.5.1.

cache_control
Get/set/modify the Cache-Control header (RFC 2616 section 14.9)

534

47.2. OTHER INTERFACES

location
Gets and sets and deletes the Location header. For more information on Location
see RFC 2616 section 14.30.

body
The body of the response, as a str. This will read in the entire app_iter if necessary.

expires
Gets and sets and deletes the Expires header. For more information on Expires see
RFC 2616 section 14.21. Converts using HTTP date.

content_type_params
A dictionary of all the parameters in the content type. This is not a view, set to
change, modifications of the dict would not be applied otherwise.

md5_etag(body=None, set_content_md5=False)
Generate an etag for the response object using an MD5 hash of the body (the body
parameter, or self.body if not given). Sets self.etag. If set_content_md5 is True
sets self.content_md5 as well

app_iter_range(start, stop)
Return a new app_iter built from the response app_iter that serves up only the given
start:stop range.

last_modified
Gets and sets and deletes the Last-Modified header. For more information on Last-
Modified see RFC 2616 section 14.29. Converts using HTTP date.

RequestClass
Alias for pyramid.request.Request

content_type
Get/set the Content-Type header (or None), without the charset or any parameters.
If you include parameters (or ; at all) when setting the content_type, any existing
parameters will be deleted; otherwise they will be preserved.

date
Gets and sets and deletes the Date header. For more information on Date see RFC
2616 section 14.18. Converts using HTTP date.

copy()
Makes a copy of the response and returns the copy.

535

47. PYRAMID.INTERFACES

accept_ranges
Gets and sets and deletes the Accept-Ranges header. For more information on
Accept-Ranges see RFC 2616, section 14.5

age
Gets and sets and deletes the Age header. Converts using int. For more information
on Age see RFC 2616, section 14.6.

request
Return the request associated with this response if any.

merge_cookies(resp)
Merge the cookies that were set on this response with the given resp object (which
can be any WSGI application). If the resp is a webob.Response object, then the
other object will be modified in-place.

headerlist
The list of response headers.

environ
Get/set the request environ associated with this response, if any.

allow
Gets and sets and deletes the Allow header. Converts using list. For more informa-
tion on Allow see RFC 2616, Section 14.7.

body_file
A file-like object that can be used to write to the body. If you passed in a list
app_iter, that app_iter will be modified by writes.

536

CHAPTER

FORTYEIGHT

PYRAMID.LOCATION

lineage(resource)
Return a generator representing the lineage of the resource object implied by the resource ar-
gument. The generator first returns resource unconditionally. Then, if resource supplies a
__parent__ attribute, return the resource represented by resource.__parent__. If that
resource has a __parent__ attribute, return that resource’s parent, and so on, until the resource
being inspected either has no __parent__ attribute or which has a __parent__ attribute of
None. For example, if the resource tree is:

thing1 = Thing()
thing2 = Thing()
thing2.__parent__ = thing1

Calling lineage(thing2) will return a generator. When we turn it into a list, we will get:

list(lineage(thing2))
[<Thing object at thing2>, <Thing object at thing1>]

inside(resource1, resource2)
Is resource1 ‘inside’ resource2? Return True if so, else False.

resource1 is ‘inside’ resource2 if resource2 is a lineage ancestor of resource1. It is
a lineage ancestor if its parent (or one of its parent’s parents, etc.) is an ancestor.

537

48. PYRAMID.LOCATION

538

CHAPTER

FORTYNINE

PYRAMID.PASTER

get_app(config_uri, name=None)
Return the WSGI application named name in the PasteDeploy config file specified by
config_uri.

If the name is None, this will attempt to parse the name from the config_uri string expecting
the format inifile#name. If no name is found, the name will default to “main”.

bootstrap(config_uri, request=None)
Load a WSGI application from the PasteDeploy config file specified by config_uri. The envi-
ronment will be configured as if it is currently serving request, leaving a natural environment in
place to write scripts that can generate URLs and utilize renderers.

This function returns a dictionary with app, root, closer, request, and registry keys.
app is the WSGI app loaded (based on the config_uri), root is the traversal root resource of
the Pyramid application, and closer is a parameterless callback that may be called when your
script is complete (it pops a threadlocal stack).

Most operations within Pyramid expect to be invoked within the context of a WSGI request,
thus it’s important when loading your application to anchor it when executing scripts and other
code that is not normally invoked during active WSGI requests.

For a complex config file containing multiple Pyramid applications, this func-
tion will setup the environment under the context of the last-loaded Pyramid applica-
tion. You may load a specific application yourself by using the lower-level functions
pyramid.paster.get_app() and pyramid.scripting.prepare() in conjunc-
tion with pyramid.config.global_registries.

539

49. PYRAMID.PASTER

config_uri – specifies the PasteDeploy config file to use for the interactive shell. The format is
inifile#name. If the name is left off, main will be assumed.

request – specified to anchor the script to a given set of WSGI parameters. For example, most
people would want to specify the host, scheme and port such that their script will generate URLs
in relation to those parameters. A request with default parameters is constructed for you if none is
provided. You can mutate the request’s environ later to setup a specific host/port/scheme/etc.

See Writing a Script for more information about how to use this function.

540

CHAPTER

FIFTY

PYRAMID.REGISTRY

class Registry(name=’‘, bases=())
A registry object is an application registry. It is used by the framework itself to perform mappings
of URLs to view callables, as well as servicing other various framework duties. A registry has
its own internal API, but this API is rarely used by Pyramid application developers (it’s usually
only used by developers of the Pyramid framework). But it has a number of attributes that may be
useful to application developers within application code, such as settings, which is a dictionary
containing application deployment settings.

For information about the purpose and usage of the application registry, see Using the Zope Com-
ponent Architecture in Pyramid.

The application registry is usually accessed as request.registry in application code.

settings
The dictionary-like deployment settings object. See Deployment Settings for in-
formation. This object is often accessed as request.registry.settings or
config.registry.settings in a typical Pyramid application.

541

50. PYRAMID.REGISTRY

542

CHAPTER

FIFTYONE

PYRAMID.RENDERERS

get_renderer(renderer_name, package=None)
Return the renderer object for the renderer named as renderer_name.

You may supply a relative asset spec as renderer_name. If the package argument is supplied,
a relative renderer name will be converted to an absolute asset specification by combining the
package supplied as package with the relative asset specification supplied as renderer_name.
If you do not supply a package (or package is None) the package name of the caller of this
function will be used as the package.

render(renderer_name, value, request=None, package=None)
Using the renderer specified as renderer_name (a template or a static renderer) render the value
(or set of values) present in value. Return the result of the renderer’s __call__ method (usually
a string or Unicode).

If the renderer name refers to a file on disk (such as when the renderer is a template), it’s usually best
to supply the name as a asset specification (e.g. packagename:path/to/template.pt).

You may supply a relative asset spec as renderer_name. If the package argument is sup-
plied, a relative renderer path will be converted to an absolute asset specification by combining the
package supplied as package with the relative asset specification supplied as renderer_name.
If you do not supply a package (or package is None) the package name of the caller of this
function will be used as the package.

The value provided will be supplied as the input to the renderer. Usually, for template renderings,
this should be a dictionary. For other renderers, this will need to be whatever sort of value the
renderer expects.

The ‘system’ values supplied to the renderer will include a basic set of top-level system names,
such as request, context, and renderer_name. If renderer globals have been specified,
these will also be used to agument the value.

Supply a request parameter in order to provide the renderer with the most correct ‘system’ values
(request and context in particular).

543

51. PYRAMID.RENDERERS

render_to_response(renderer_name, value, request=None, package=None)
Using the renderer specified as renderer_name (a template or a static renderer) render the value
(or set of values) using the result of the renderer’s __call__ method (usually a string or Unicode)
as the response body.

If the renderer name refers to a file on disk (such as when the renderer is a template), it’s usually
best to supply the name as a asset specification.

You may supply a relative asset spec as renderer_name. If the package argument is supplied,
a relative renderer name will be converted to an absolute asset specification by combining the
package supplied as package with the relative asset specification supplied as renderer_name.
If you do not supply a package (or package is None) the package name of the caller of this
function will be used as the package.

The value provided will be supplied as the input to the renderer. Usually, for template renderings,
this should be a dictionary. For other renderers, this will need to be whatever sort of value the
renderer expects.

The ‘system’ values supplied to the renderer will include a basic set of top-level system names,
such as request, context, and renderer_name. If renderer globals have been specified,
these will also be used to agument the value.

Supply a request parameter in order to provide the renderer with the most correct ‘system’
values (request and context in particular). Keep in mind that if the request parameter is
not passed in, any changes to request.response attributes made before calling this function
will be ignored.

class JSONP(param_name=’callback’)
JSONP renderer factory helper which implements a hybrid json/jsonp renderer. JSONP is useful
for making cross-domain AJAX requests.

Configure a JSONP renderer using the pyramid.config.Configurator.add_renderer()
API at application startup time:

from pyramid.config import Configurator

config = Configurator()
config.add_renderer(’jsonp’, JSONP(param_name=’callback’))

Once this renderer is registered via add_renderer() as above, you
can use jsonp as the renderer= parameter to @view_config or
pyramid.config.Configurator.add_view‘():

544

http://en.wikipedia.org/wiki/JSONP

from pyramid.view import view_config

@view_config(renderer=’jsonp’)
def myview(request):

return {’greeting’:’Hello world’}

When a view is called that uses the JSONP renderer:

•If there is a parameter in the request’s HTTP query string that matches the param_name of
the registered JSONP renderer (by default, callback), the renderer will return a JSONP
response.

•If there is no callback parameter in the request’s query string, the renderer will return a ‘plain’
JSON response.

This feature is new in Pyramid 1.1.

See also: JSONP Renderer.

null_renderer
An object that can be used in advanced integration cases as input to the view configuration
renderer= argument. When the null renderer is used as a view renderer argument, Pyramid
avoids converting the view callable result into a Response object. This is useful if you want to
reuse the view configuration and lookup machinery outside the context of its use by the Pyramid
router (e.g. the package named pyramid_rpc does this).

545

51. PYRAMID.RENDERERS

546

CHAPTER

FIFTYTWO

PYRAMID.REQUEST

class Request(environ, charset=(No Default), unicode_errors=(No Default), de-
code_param_names=(No Default), **kw)

A subclass of the WebOb Request class. An instance of this class is created by the router and is
provided to a view callable (and to other subsystems) as the request argument.

The documentation below (save for the add_response_callback and
add_finished_callback methods, which are defined in this subclass itself, and the attributes
context, registry, root, subpath, traversed, view_name, virtual_root , and
virtual_root_path, each of which is added to the request by the router at request ingress
time) are autogenerated from the WebOb source code used when this documentation was generated.

Due to technical constraints, we can’t yet display the WebOb version number from which this
documentation is autogenerated, but it will be the ‘prevailing WebOb version’ at the time of the
release of this Pyramid version. See http://pythonpaste.org/webob/ for further information.

context
The context will be available as the context attribute of the request object. It will be the
context object implied by the current request. See Traversal for information about context
objects.

registry
The application registry will be available as the registry attribute of the request object.
See Using the Zope Component Architecture in Pyramid for more information about the ap-
plication registry.

root
The root object will be available as the root attribute of the request object. It will be the
resource object at which traversal started (the root). See Traversal for information about root
objects.

547

http://pythonpaste.org/webob/

52. PYRAMID.REQUEST

subpath
The traversal subpath will be available as the subpath attribute of the request object. It
will be a sequence containing zero or more elements (which will be Unicode objects). See
Traversal for information about the subpath.

traversed
The “traversal path” will be available as the traversed attribute of the request object. It
will be a sequence representing the ordered set of names that were used to traverse to the
context, not including the view name or subpath. If there is a virtual root associated with the
request, the virtual root path is included within the traversal path. See Traversal for more
information.

view_name
The view name will be available as the view_name attribute of the request object. It will be
a single string (possibly the empty string if we’re rendering a default view). See Traversal for
information about view names.

virtual_root
The virtual root will be available as the virtual_root attribute of the request object. It
will be the virtual root object implied by the current request. See Virtual Hosting for more
information about virtual roots.

virtual_root_path
The virtual root path will be available as the virtual_root_path attribute of the request
object. It will be a sequence representing the ordered set of names that were used to traverse
to the virtual root object. See Virtual Hosting for more information about virtual roots.

exception
If an exception was raised by a root factory or a view callable, or at various other points
where Pyramid executes user-defined code during the processing of a request, the exception
object which was caught will be available as the exception attribute of the request within a
exception view, a response callback or a finished callback. If no exception occurred, the value
of request.exception will be None within response and finished callbacks.

exc_info
If an exception was raised by a root factory or a view callable, or at various other points
where Pyramid executes user-defined code during the processing of a request, result of
sys.exc_info() will be available as the exc_info attribute of the request within a
exception view, a response callback or a finished callback. If no exception occurred, the value
of request.exc_info will be None within response and finished callbacks.

548

response
This attribute is actually a “reified” property which returns an instance of the
pyramid.response.Response class. The response object returned does not exist until
this attribute is accessed. Once it is accessed, subsequent accesses to this request object will
return the same Response object.

The request.response API can is used by renderers. A render obtains the response
object it will return from a view that uses that renderer by accessing request.response.
Therefore, it’s possible to use the request.response API to set up a response object
with “the right” attributes (e.g. by calling request.response.set_cookie(...)
or request.response.content_type = ’text/plain’, etc) within a view that
uses a renderer. For example, within a view that uses a renderer:

response = request.response
response.set_cookie(’mycookie’, ’mine, all mine!’)
return {’text’:’Value that will be used by the renderer’}

Mutations to this response object will be preserved in the response sent to the client after
rendering. For more information about using request.response in conjunction with a
renderer, see Varying Attributes of Rendered Responses.

Non-renderer code can also make use of request.response instead of creating a response “by
hand”. For example, in view code:

response = request.response
response.body = ’Hello!’
response.content_type = ’text/plain’
return response

Note that the response in this circumstance is not “global”; it still must be returned from the
view code if a renderer is not used.

session
If a session factory has been configured, this attribute will represent the current user’s session
object. If a session factory has not been configured, requesting the request.session
attribute will cause a pyramid.exceptions.ConfigurationError to be raised.

tmpl_context
The template context for Pylons-style applications.

matchdict
If a route has matched during this request, this attribute will be a dictionary containing the
values matched by the URL pattern associated with the route. If a route has not matched
during this request, the value of this attribute will be None. See The Matchdict.

549

52. PYRAMID.REQUEST

matched_route
If a route has matched during this request, this attribute will be an obect representing the route
matched by the URL pattern associated with the route. If a route has not matched during this
request, the value of this attribute will be None. See The Matched Route.

add_response_callback(callback)
Add a callback to the set of callbacks to be called by the router at a point after a response
object is successfully created. Pyramid does not have a global response object: this function-
ality allows an application to register an action to be performed against the response once one
is created.

A ‘callback’ is a callable which accepts two positional parameters: request and
response. For example:

1 def cache_callback(request, response):
2 ’Set the cache_control max_age for the response’
3 response.cache_control.max_age = 360
4 request.add_response_callback(cache_callback)

Response callbacks are called in the order they’re added (first-to-most-recently-added). No
response callback is called if an exception happens in application code, or if the response
object returned by view code is invalid.

All response callbacks are called after the pyramid.events.NewResponse event is
sent.

Errors raised by callbacks are not handled specially. They will be propagated to the caller of
the Pyramid router application.

See also: Using Response Callbacks.

add_finished_callback(callback)
Add a callback to the set of callbacks to be called unconditionally by the router at the very
end of request processing.

callback is a callable which accepts a single positional parameter: request. For exam-
ple:

1 import transaction
2

3 def commit_callback(request):
4 ’’’commit or abort the transaction associated with request’’’
5 if request.exception is not None:
6 transaction.abort()
7 else:
8 transaction.commit()
9 request.add_finished_callback(commit_callback)

550

Finished callbacks are called in the order they’re added (first- to most-recently- added). Fin-
ished callbacks (unlike response callbacks) are always called, even if an exception happens in
application code that prevents a response from being generated.

The set of finished callbacks associated with a request are called very late in the processing
of that request; they are essentially the last thing called by the router. They are called after
response processing has already occurred in a top-level finally: block within the router
request processing code. As a result, mutations performed to the request provided to a fin-
ished callback will have no meaningful effect, because response processing will have already
occurred, and the request’s scope will expire almost immediately after all finished callbacks
have been processed.

Errors raised by finished callbacks are not handled specially. They will be propagated to the
caller of the Pyramid router application.

See also: Using Finished Callbacks.

route_url(route_name, *elements, **kw)
Generates a fully qualified URL for a named Pyramid route configuration.

Use the route’s name as the first positional argument. Additional positional arguments
(*elements) are appended to the URL as path segments after it is generated.

Use keyword arguments to supply values which match any dynamic path elements in the route
definition. Raises a KeyError exception if the URL cannot be generated for any reason (not
enough arguments, for example).

For example, if you’ve defined a route named “foobar” with the path
{foo}/{bar}/*traverse:

request.route_url(’foobar’,
foo=’1’) => <KeyError exception>

request.route_url(’foobar’,
foo=’1’,
bar=’2’) => <KeyError exception>

request.route_url(’foobar’,
foo=’1’,
bar=’2’,
traverse=(’a’,’b’)) => http://e.com/1/2/a/b

request.route_url(’foobar’,
foo=’1’,
bar=’2’,
traverse=’/a/b’) => http://e.com/1/2/a/b

551

52. PYRAMID.REQUEST

Values replacing :segment arguments can be passed as strings or Unicode objects. They
will be encoded to UTF-8 and URL-quoted before being placed into the generated URL.

Values replacing *remainder arguments can be passed as strings or tuples of Uni-
code/string values. If a tuple is passed as a *remainder replacement value, its values
are URL-quoted and encoded to UTF-8. The resulting strings are joined with slashes and
rendered into the URL. If a string is passed as a *remainder replacement value, it is tacked
on to the URL untouched.

If a keyword argument _query is present, it will be used to compose a query string that will
be tacked on to the end of the URL. The value of _querymust be a sequence of two-tuples or
a data structure with an .items()method that returns a sequence of two-tuples (presumably
a dictionary). This data structure will be turned into a query string per the documentation of
pyramid.encode.urlencode() function. After the query data is turned into a query
string, a leading ? is prepended, and the resulting string is appended to the generated URL.

Python data structures that are passed as _query which are sequences or
dictionaries are turned into a string under the same rules as when run through
urllib.urlencode() with the doseq argument equal to True. This means that
sequences can be passed as values, and a k=v pair will be placed into the query string for
each value.

If a keyword argument _anchor is present, its string representation will be used as a
named anchor in the generated URL (e.g. if _anchor is passed as foo and the route
URL is http://example.com/route/url, the resulting generated URL will be
http://example.com/route/url#foo).

If _anchor is passed as a string, it should be UTF-8 encoded. If _anchor is passed
as a Unicode object, it will be converted to UTF-8 before being appended to the URL. The
anchor value is not quoted in any way before being appended to the generated URL.

If both _anchor and _query are specified, the anchor element will always follow the query
element, e.g. http://example.com?foo=1#bar.

If a keyword _app_url is present, it will be used as the proto-
col/hostname/port/leading path prefix of the generated URL. For example, using
an _app_url of http://example.com:8080/foo would cause the URL
http://example.com:8080/foo/fleeb/flub to be returned from this
function if the expansion of the route pattern associated with the route_name

552

expanded to /fleeb/flub. If _app_url is not specified, the result of
request.application_url will be used as the prefix (the default).

This function raises a KeyError if the URL cannot be generated due to missing replacement
names. Extra replacement names are ignored.

If the route object which matches the route_name argument has a pregenerator, the
*elements and **kw arguments arguments passed to this function might be augmented
or changed.

route_path(route_name, *elements, **kw)
Generates a path (aka a ‘relative URL’, a URL minus the host, scheme, and port) for a named
Pyramid route configuration.

This function accepts the same argument as pyramid.request.Request.route_url()
and performs the same duty. It just omits the host, port, and scheme information in the
return value; only the script_name, path, query parameters, and anchor data are present in the
returned string.

For example, if you’ve defined a route named ‘foobar’ with the path /{foo}/{bar}, this
call to route_path:

request.route_path(’foobar’, foo=’1’, bar=’2’)

Will return the string /1/2.

Calling request.route_path(’route’) is the same as calling
request.route_url(’route’, _app_url=request.script_name).
pyramid.request.Request.route_path() is, in fact, implemented in terms of
:meth:‘pyramid.request.Request.route_url in just this way. As a result, any _app_url
passed within the **kw values to route_path will be ignored.

current_route_url(*elements, **kw)
Generates a fully qualified URL for a named Pyramid route configuration based on the ‘cur-
rent route’.

This function supplements pyramid.request.Request.route_url(). It presents
an easy way to generate a URL for the ‘current route’ (defined as the route which matched
when the request was generated).

553

52. PYRAMID.REQUEST

The arguments to this method have the same meaning as those with the same names passed to
pyramid.request.Request.route_url(). It also understands an extra argument
which route_url does not named _route_name.

The route name used to generate a URL is taken from either the _route_name key-
word argument or the name of the route which is currently associated with the request
if _route_name was not passed. Keys and values from the current request matchdict
are combined with the kw arguments to form a set of defaults named newkw. Then
request.route_url(route_name, *elements, **newkw) is called, returning
a URL.

Examples follow.

If the ‘current route’ has the route pattern /foo/{page} and the current url
path is /foo/1 , the matchdict will be {’page’:’1’}. The result of
request.current_route_url() in this situation will be /foo/1.

If the ‘current route’ has the route pattern /foo/{page} and the current
url path is /foo/1, the matchdict will be {’page’:’1’}. The result of
request.current_route_url(page=’2’) in this situation will be /foo/2.

Usage of the _route_name keyword argument: if our routing table defines routes
/foo/{action} named ‘foo’ and /foo/{action}/{page} named fooaction, and
the current url pattern is /foo/view (which has matched the /foo/{action} route),
we may want to use the matchdict args to generate a URL to the fooaction route.
In this scenario, request.current_route_url(_route_name=’fooaction’,
page=’5’) Will return string like: /foo/view/5.

current_route_path(*elements, **kw)
Generates a path (aka a ‘relative URL’, a URL minus the host, scheme, and port) for the
Pyramid route configuration matched by the current request.

This function accepts the same argument as pyramid.request.Request.current_route_url()
and performs the same duty. It just omits the host, port, and scheme information in the
return value; only the script_name, path, query parameters, and anchor data are present in the
returned string.

For example, if the route matched by the current request has the pattern /{foo}/{bar},
this call to current_route_path:

request.current_route_path(foo=’1’, bar=’2’)

554

Will return the string /1/2.

Calling request.current_route_path(’route’) is
the same as calling request.current_route_url(’route’,
_app_url=request.script_name). pyramid.request.Request.current_route_path()
is, in fact, implemented in terms of :meth:‘pyramid.request.Request.current_route_url
in just this way. As a result, any _app_url passed within the **kw values to
current_route_path will be ignored.

static_url(path, **kw)
Generates a fully qualified URL for a static asset. The asset must live within a location
defined via the pyramid.config.Configurator.add_static_view() configu-
ration declaration (see Serving Static Assets).

Example:

request.static_url(’mypackage:static/foo.css’) =>

http://example.com/static/foo.css

The path argument points at a file or directory on disk which a URL should be generated for.
The path may be either a relative path (e.g. static/foo.css) or a asset specification
(e.g. mypackage:static/foo.css). A path may not be an absolute filesystem path
(a ValueError will be raised if this function is supplied with an absolute path).

The purpose of the **kw argument is the same as the purpose of the
pyramid.request.Request.route_url() **kw argument. See the docu-
mentation for that function to understand the arguments which you can provide to it.
However, typically, you don’t need to pass anything as *kw when generating a static asset
URL.

This function raises a ValueError if a static view definition cannot be found which matches
the path specification.

static_path(path, **kw)
Generates a path (aka a ‘relative URL’, a URL minus the host, scheme, and port) for a static
resource.

This function accepts the same argument as pyramid.request.Request.current_static_url()
and performs the same duty. It just omits the host, port, and scheme information in the
return value; only the script_name, path, query parameters, and anchor data are present in the
returned string.

Example:

555

52. PYRAMID.REQUEST

request.static_path(’mypackage:static/foo.css’) =>

/static/foo.css

Calling request.static_path(apath) is the same as calling
request.static_url(apath, _app_url=request.script_name).
pyramid.request.Request.static_path() is, in fact, implemented in terms
of :meth:‘pyramid.request.Request.static_url in just this way. As a result, any _app_url
passed within the **kw values to static_path will be ignored.

resource_url(resource, *elements, **kw)
Generate a string representing the absolute URL of the resource object based on
the wsgi.url_scheme, HTTP_HOST or SERVER_NAME in the request, plus any
SCRIPT_NAME. The overall result of this method is always a UTF-8 encoded string (never
Unicode).

Examples:

request.resource_url(resource) =>

http://example.com/

request.resource_url(resource, ’a.html’) =>

http://example.com/a.html

request.resource_url(resource, ’a.html’, query={’q’:’1’}) =>

http://example.com/a.html?q=1

request.resource_url(resource, ’a.html’, anchor=’abc’) =>

http://example.com/a.html#abc

Any positional arguments passed in as elementsmust be strings Unicode objects, or integer
objects. These will be joined by slashes and appended to the generated resource URL. Each
of the elements passed in is URL-quoted before being appended; if any element is Unicode, it
will converted to a UTF-8 bytestring before being URL-quoted. If any element is an integer,
it will be converted to its string representation before being URL-quoted.

556

if no elements arguments are specified, the resource URL will end with a trailing
slash. If any elements are used, the generated URL will not end in trailing a slash.

If a keyword argument query is present, it will be used to compose a query string that will be
tacked on to the end of the URL. The value of query must be a sequence of two-tuples or a
data structure with an .items() method that returns a sequence of two-tuples (presumably
a dictionary). This data structure will be turned into a query string per the documentation of
pyramid.url.urlencode function. After the query data is turned into a query string, a
leading ? is prepended, and the resulting string is appended to the generated URL.

Python data structures that are passed as query which are sequences or
dictionaries are turned into a string under the same rules as when run through
urllib.urlencode() with the doseq argument equal to True. This means that
sequences can be passed as values, and a k=v pair will be placed into the query string for
each value.

If a keyword argument anchor is present, its string representation will be used as a
named anchor in the generated URL (e.g. if anchor is passed as foo and the resource
URL is http://example.com/resource/url, the resulting generated URL will be
http://example.com/resource/url#foo).

If anchor is passed as a string, it should be UTF-8 encoded. If anchor is passed
as a Unicode object, it will be converted to UTF-8 before being appended to the URL. The
anchor value is not quoted in any way before being appended to the generated URL.

If both anchor and query are specified, the anchor element will always follow the query
element, e.g. http://example.com?foo=1#bar.

If the resource passed in has a __resource_url__ method, it will be used to generate
the URL (scheme, host, port, path) that for the base resource which is operated upon by this
function. See also Overriding Resource URL Generation.

If the resource used is the result of a traversal, it must be location-aware. The
resource can also be the context of a URL dispatch; contexts found this way do not need
to be location-aware.

557

52. PYRAMID.REQUEST

If a ‘virtual root path’ is present in the request environment (the value of the WSGI
environ key HTTP_X_VHM_ROOT), and the resource was obtained via traversal, the URL
path will not include the virtual root prefix (it will be stripped off the left hand side of the
generated URL).

For backwards compatibility purposes, this method is also aliased as the model_url
method of request.

response_*
In Pyramid 1.0, you could set attributes on a pyramid.request.Request which
influenced the behavor of rendered responses (views which use a renderer and which
don’t directly return a response). These attributes began with response_, such as
response_headerlist. If you needed to influence response values from a view that
uses a renderer (such as the status code, a header, the content type, etc) you would set these
attributes. See Deprecated Mechanism to Vary Attributes of Rendered Responses for further
discussion. As of Pyramid 1.1, assignment to response_* attrs are deprecated. Assigning
to one is still supported but will cause a deprecation warning to be emitted, and eventually the
feature will be removed. For new code, instead of assigning response_* attributes to the
request, use API of the the pyramid.request.Request.response object (exposed
to view code as request.response) to influence rendered response behavior.

json_body
This property will return the JSON-decoded variant of the request body. If the request body
is not well-formed JSON, or there is no body associated with this request, this property will
raise an exception. See also Dealing With A JSON-Encoded Request Body.

GET
Like .str_GET, but decodes values and keys

POST
Like .str_POST, but decodes values and keys

accept
Gets and sets the Accept header (HTTP spec section 14.1).

accept_charset
Gets and sets the Accept-Charset header (HTTP spec section 14.2).

accept_encoding
Gets and sets the Accept-Encoding header (HTTP spec section 14.3).

558

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.3

accept_language
Gets and sets the Accept-Language header (HTTP spec section 14.4).

add_finished_callback(callback)
Add a callback to the set of callbacks to be called unconditionally by the router at the very
end of request processing.

callback is a callable which accepts a single positional parameter: request. For exam-
ple:

1 import transaction
2

3 def commit_callback(request):
4 ’’’commit or abort the transaction associated with request’’’
5 if request.exception is not None:
6 transaction.abort()
7 else:
8 transaction.commit()
9 request.add_finished_callback(commit_callback)

Finished callbacks are called in the order they’re added (first- to most-recently- added). Fin-
ished callbacks (unlike response callbacks) are always called, even if an exception happens in
application code that prevents a response from being generated.

The set of finished callbacks associated with a request are called very late in the processing
of that request; they are essentially the last thing called by the router. They are called after
response processing has already occurred in a top-level finally: block within the router
request processing code. As a result, mutations performed to the request provided to a fin-
ished callback will have no meaningful effect, because response processing will have already
occurred, and the request’s scope will expire almost immediately after all finished callbacks
have been processed.

Errors raised by finished callbacks are not handled specially. They will be propagated to the
caller of the Pyramid router application.

See also: Using Finished Callbacks.

add_response_callback(callback)
Add a callback to the set of callbacks to be called by the router at a point after a response
object is successfully created. Pyramid does not have a global response object: this function-
ality allows an application to register an action to be performed against the response once one
is created.

A ‘callback’ is a callable which accepts two positional parameters: request and
response. For example:

559

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4

52. PYRAMID.REQUEST

1 def cache_callback(request, response):
2 ’Set the cache_control max_age for the response’
3 response.cache_control.max_age = 360
4 request.add_response_callback(cache_callback)

Response callbacks are called in the order they’re added (first-to-most-recently-added). No
response callback is called if an exception happens in application code, or if the response
object returned by view code is invalid.

All response callbacks are called after the pyramid.events.NewResponse event is
sent.

Errors raised by callbacks are not handled specially. They will be propagated to the caller of
the Pyramid router application.

See also: Using Response Callbacks.

application_url
The URL including SCRIPT_NAME (no PATH_INFO or query string)

as_string(skip_body=False)
Return HTTP string representing this request. If skip_body is True, exclude the body. If
skip_body is an integer larger than one, skip body only if its length is bigger than that number.

authorization
Gets and sets the Authorization header (HTTP spec section 14.8). Converts it using
parse_auth and serialize_auth.

classmethod blank(path, environ=None, base_url=None, headers=None, POST=None,
**kw)

Create a blank request environ (and Request wrapper) with the given path (path should be
urlencoded), and any keys from environ.

The path will become path_info, with any query string split off and used.

All necessary keys will be added to the environ, but the values you pass in will take prece-
dence. If you pass in base_url then wsgi.url_scheme, HTTP_HOST, and SCRIPT_NAME
will be filled in from that value.

Any extra keyword will be passed to __init__ (e.g., decode_param_names).

body
Return the content of the request body.

560

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8

body_file
Input stream of the request (wsgi.input). Setting this property resets the content_length and
seekable flag (unlike setting req.body_file_raw).

body_file_raw
Gets and sets the wsgi.input key in the environment.

body_file_seekable
Get the body of the request (wsgi.input) as a seekable file-like object. Middleware and routing
applications should use this attribute over .body_file.

If you access this value, CONTENT_LENGTH will also be updated.

cache_control
Get/set/modify the Cache-Control header (HTTP spec section 14.9)

call_application(application, catch_exc_info=False)
Call the given WSGI application, returning (status_string, headerlist,
app_iter)

Be sure to call app_iter.close() if it’s there.

If catch_exc_info is true, then returns (status_string, headerlist, app_iter,
exc_info), where the fourth item may be None, but won’t be if there was an exception. If
you don’t do this and there was an exception, the exception will be raised directly.

charset
Get the charset of the request.

If the request was sent with a charset parameter on the Content-Type, that will be used. Oth-
erwise if there is a default charset (set during construction, or as a class attribute) that will be
returned. Otherwise None.

Setting this property after request instantiation will always update Content-Type. Deleting
the property updates the Content-Type to remove any charset parameter (if none exists, then
deleting the property will do nothing, and there will be no error).

content_length
Gets and sets the Content-Length header (HTTP spec section 14.13). Converts it using
int.

561

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.13

52. PYRAMID.REQUEST

content_type
Return the content type, but leaving off any parameters (like charset, but also things like the
type in application/atom+xml; type=entry)

If you set this property, you can include parameters, or if you don’t include any parameters in
the value then existing parameters will be preserved.

cookies
Like .str_cookies, but decodes values and keys

copy()
Copy the request and environment object.

This only does a shallow copy, except of wsgi.input

copy_body()
Copies the body, in cases where it might be shared with another request object and that is not
desired.

This copies the body in-place, either into a StringIO object or a temporary file.

copy_get()
Copies the request and environment object, but turning this request into a GET along the way.
If this was a POST request (or any other verb) then it becomes GET, and the request body is
thrown away.

current_route_path(*elements, **kw)
Generates a path (aka a ‘relative URL’, a URL minus the host, scheme, and port) for the
Pyramid route configuration matched by the current request.

This function accepts the same argument as pyramid.request.Request.current_route_url()
and performs the same duty. It just omits the host, port, and scheme information in the
return value; only the script_name, path, query parameters, and anchor data are present in the
returned string.

For example, if the route matched by the current request has the pattern /{foo}/{bar},
this call to current_route_path:

request.current_route_path(foo=’1’, bar=’2’)

562

Will return the string /1/2.

Calling request.current_route_path(’route’) is
the same as calling request.current_route_url(’route’,
_app_url=request.script_name). pyramid.request.Request.current_route_path()
is, in fact, implemented in terms of :meth:‘pyramid.request.Request.current_route_url
in just this way. As a result, any _app_url passed within the **kw values to
current_route_path will be ignored.

current_route_url(*elements, **kw)
Generates a fully qualified URL for a named Pyramid route configuration based on the ‘cur-
rent route’.

This function supplements pyramid.request.Request.route_url(). It presents
an easy way to generate a URL for the ‘current route’ (defined as the route which matched
when the request was generated).

The arguments to this method have the same meaning as those with the same names passed to
pyramid.request.Request.route_url(). It also understands an extra argument
which route_url does not named _route_name.

The route name used to generate a URL is taken from either the _route_name key-
word argument or the name of the route which is currently associated with the request
if _route_name was not passed. Keys and values from the current request matchdict
are combined with the kw arguments to form a set of defaults named newkw. Then
request.route_url(route_name, *elements, **newkw) is called, returning
a URL.

Examples follow.

If the ‘current route’ has the route pattern /foo/{page} and the current url
path is /foo/1 , the matchdict will be {’page’:’1’}. The result of
request.current_route_url() in this situation will be /foo/1.

If the ‘current route’ has the route pattern /foo/{page} and the current
url path is /foo/1, the matchdict will be {’page’:’1’}. The result of
request.current_route_url(page=’2’) in this situation will be /foo/2.

Usage of the _route_name keyword argument: if our routing table defines routes
/foo/{action} named ‘foo’ and /foo/{action}/{page} named fooaction, and
the current url pattern is /foo/view (which has matched the /foo/{action} route),
we may want to use the matchdict args to generate a URL to the fooaction route.
In this scenario, request.current_route_url(_route_name=’fooaction’,
page=’5’) Will return string like: /foo/view/5.

563

52. PYRAMID.REQUEST

date
Gets and sets the Date header (HTTP spec section 14.8). Converts it using HTTP date.

classmethod from_file(fp)
Read a request from a file-like object (it must implement .read(size) and
.readline()).

It will read up to the end of the request, not the end of the file (unless the request is a POST
or PUT and has no Content-Length, in that case, the entire file is read).

This reads the request as represented by str(req); it may not read every valid HTTP request
properly.

classmethod from_string(s)
Create a request from HTTP string. If the string contains extra data after the request, raise a
ValueError.

get_response(application, catch_exc_info=False)
Like .call_application(application), except returns a response object with
.status, .headers, and .body attributes.

This will use self.ResponseClass to figure out the class of the response object to return.

headers
All the request headers as a case-insensitive dictionary-like object.

host
Host name provided in HTTP_HOST, with fall-back to SERVER_NAME

host_url
The URL through the host (no path)

http_version
Gets and sets the SERVER_PROTOCOL key in the environment.

if_match
Gets and sets the If-Match header (HTTP spec section 14.24). Converts it as a Etag.

if_modified_since
Gets and sets the If-Modified-Since header (HTTP spec section 14.25). Converts it
using HTTP date.

if_none_match
Gets and sets the If-None-Match header (HTTP spec section 14.26). Converts it as a Etag.

564

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.25
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26

if_range
Gets and sets the If-Range header (HTTP spec section 14.27). Converts it using IfRange
object.

if_unmodified_since
Gets and sets the If-Unmodified-Since header (HTTP spec section 14.28). Converts it
using HTTP date.

is_body_readable
webob.is_body_readable is a flag that tells us that we can read the input stream even
though CONTENT_LENGTH is missing. This allows FakeCGIBody to work and can
be used by servers to support chunked encoding in requests. For background see
https://bitbucket.org/ianb/webob/issue/6

is_body_seekable
Gets and sets the webob.is_body_seekable key in the environment.

is_response(ob)
Return True if the object passed as ob is a valid response object, False otherwise.

is_xhr
Is X-Requested-With header present and equal to XMLHttpRequest?

Note: this isn’t set by every XMLHttpRequest request, it is only set if you are using a
Javascript library that sets it (or you set the header yourself manually). Currently Prototype
and jQuery are known to set this header.

make_body_seekable()
This forces environ[’wsgi.input’] to be seekable. That means that, the content is
copied into a StringIO or temporary file and flagged as seekable, so that it will not be unnec-
essarily copied again.

After calling this method the .body_file is always seeked to the start of file and .content_length
is not None.

The choice to copy to StringIO is made from self.request_body_tempfile_limit

make_tempfile()
Create a tempfile to store big request body. This API is not stable yet. A ‘size’ argument
might be added.

max_forwards
Gets and sets the Max-Forwards header (HTTP spec section 14.31). Converts it using int.

565

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.27
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.28
https://bitbucket.org/ianb/webob/issue/6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.31

52. PYRAMID.REQUEST

method
Gets and sets the REQUEST_METHOD key in the environment.

model_url(resource, *elements, **kw)
Generate a string representing the absolute URL of the resource object based on
the wsgi.url_scheme, HTTP_HOST or SERVER_NAME in the request, plus any
SCRIPT_NAME. The overall result of this method is always a UTF-8 encoded string (never
Unicode).

Examples:

request.resource_url(resource) =>

http://example.com/

request.resource_url(resource, ’a.html’) =>

http://example.com/a.html

request.resource_url(resource, ’a.html’, query={’q’:’1’}) =>

http://example.com/a.html?q=1

request.resource_url(resource, ’a.html’, anchor=’abc’) =>

http://example.com/a.html#abc

Any positional arguments passed in as elementsmust be strings Unicode objects, or integer
objects. These will be joined by slashes and appended to the generated resource URL. Each
of the elements passed in is URL-quoted before being appended; if any element is Unicode, it
will converted to a UTF-8 bytestring before being URL-quoted. If any element is an integer,
it will be converted to its string representation before being URL-quoted.

if no elements arguments are specified, the resource URL will end with a trailing
slash. If any elements are used, the generated URL will not end in trailing a slash.

If a keyword argument query is present, it will be used to compose a query string that will be
tacked on to the end of the URL. The value of query must be a sequence of two-tuples or a
data structure with an .items() method that returns a sequence of two-tuples (presumably
a dictionary). This data structure will be turned into a query string per the documentation of
pyramid.url.urlencode function. After the query data is turned into a query string, a
leading ? is prepended, and the resulting string is appended to the generated URL.

566

Python data structures that are passed as query which are sequences or
dictionaries are turned into a string under the same rules as when run through
urllib.urlencode() with the doseq argument equal to True. This means that
sequences can be passed as values, and a k=v pair will be placed into the query string for
each value.

If a keyword argument anchor is present, its string representation will be used as a
named anchor in the generated URL (e.g. if anchor is passed as foo and the resource
URL is http://example.com/resource/url, the resulting generated URL will be
http://example.com/resource/url#foo).

If anchor is passed as a string, it should be UTF-8 encoded. If anchor is passed
as a Unicode object, it will be converted to UTF-8 before being appended to the URL. The
anchor value is not quoted in any way before being appended to the generated URL.

If both anchor and query are specified, the anchor element will always follow the query
element, e.g. http://example.com?foo=1#bar.

If the resource passed in has a __resource_url__ method, it will be used to generate
the URL (scheme, host, port, path) that for the base resource which is operated upon by this
function. See also Overriding Resource URL Generation.

If the resource used is the result of a traversal, it must be location-aware. The
resource can also be the context of a URL dispatch; contexts found this way do not need
to be location-aware.

If a ‘virtual root path’ is present in the request environment (the value of the WSGI
environ key HTTP_X_VHM_ROOT), and the resource was obtained via traversal, the URL
path will not include the virtual root prefix (it will be stripped off the left hand side of the
generated URL).

For backwards compatibility purposes, this method is also aliased as the model_url
method of request.

params
Like .str_params, but decodes values and keys

567

52. PYRAMID.REQUEST

path
The path of the request, without host or query string

path_info
Gets and sets the PATH_INFO key in the environment.

path_info_peek()
Returns the next segment on PATH_INFO, or None if there is no next segment. Doesn’t
modify the environment.

path_info_pop(pattern=None)
‘Pops’ off the next segment of PATH_INFO, pushing it onto SCRIPT_NAME, and returning
the popped segment. Returns None if there is nothing left on PATH_INFO.

Does not return ” when there’s an empty segment (like /path//path); these segments are
just ignored.

Optional pattern argument is a regexp to match the return value before returning. If there
is no match, no changes are made to the request and None is returned.

path_qs
The path of the request, without host but with query string

path_url
The URL including SCRIPT_NAME and PATH_INFO, but not QUERY_STRING

postvars
Wraps a descriptor, with a deprecation warning or error

pragma
Gets and sets the Pragma header (HTTP spec section 14.32).

query_string
Gets and sets the QUERY_STRING key in the environment.

queryvars
Wraps a descriptor, with a deprecation warning or error

range
Gets and sets the Range header (HTTP spec section 14.35). Converts it using Range object.

referer
Gets and sets the Referer header (HTTP spec section 14.36).

568

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.32
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.35
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.36

referrer
Gets and sets the Referer header (HTTP spec section 14.36).

relative_url(other_url, to_application=False)
Resolve other_url relative to the request URL.

If to_application is True, then resolve it relative to the URL with only SCRIPT_NAME

remote_addr
Gets and sets the REMOTE_ADDR key in the environment.

remote_user
Gets and sets the REMOTE_USER key in the environment.

remove_conditional_headers(remove_encoding=True, remove_range=True, re-
move_match=True, remove_modified=True)

Remove headers that make the request conditional.

These headers can cause the response to be 304 Not Modified, which in some cases you may
not want to be possible.

This does not remove headers like If-Match, which are used for conflict detection.

resource_url(resource, *elements, **kw)
Generate a string representing the absolute URL of the resource object based on
the wsgi.url_scheme, HTTP_HOST or SERVER_NAME in the request, plus any
SCRIPT_NAME. The overall result of this method is always a UTF-8 encoded string (never
Unicode).

Examples:

request.resource_url(resource) =>

http://example.com/

request.resource_url(resource, ’a.html’) =>

http://example.com/a.html

request.resource_url(resource, ’a.html’, query={’q’:’1’}) =>

http://example.com/a.html?q=1

request.resource_url(resource, ’a.html’, anchor=’abc’) =>

http://example.com/a.html#abc

569

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.36

52. PYRAMID.REQUEST

Any positional arguments passed in as elementsmust be strings Unicode objects, or integer
objects. These will be joined by slashes and appended to the generated resource URL. Each
of the elements passed in is URL-quoted before being appended; if any element is Unicode, it
will converted to a UTF-8 bytestring before being URL-quoted. If any element is an integer,
it will be converted to its string representation before being URL-quoted.

if no elements arguments are specified, the resource URL will end with a trailing
slash. If any elements are used, the generated URL will not end in trailing a slash.

If a keyword argument query is present, it will be used to compose a query string that will be
tacked on to the end of the URL. The value of query must be a sequence of two-tuples or a
data structure with an .items() method that returns a sequence of two-tuples (presumably
a dictionary). This data structure will be turned into a query string per the documentation of
pyramid.url.urlencode function. After the query data is turned into a query string, a
leading ? is prepended, and the resulting string is appended to the generated URL.

Python data structures that are passed as query which are sequences or
dictionaries are turned into a string under the same rules as when run through
urllib.urlencode() with the doseq argument equal to True. This means that
sequences can be passed as values, and a k=v pair will be placed into the query string for
each value.

If a keyword argument anchor is present, its string representation will be used as a
named anchor in the generated URL (e.g. if anchor is passed as foo and the resource
URL is http://example.com/resource/url, the resulting generated URL will be
http://example.com/resource/url#foo).

If anchor is passed as a string, it should be UTF-8 encoded. If anchor is passed
as a Unicode object, it will be converted to UTF-8 before being appended to the URL. The
anchor value is not quoted in any way before being appended to the generated URL.

If both anchor and query are specified, the anchor element will always follow the query
element, e.g. http://example.com?foo=1#bar.

If the resource passed in has a __resource_url__ method, it will be used to generate
the URL (scheme, host, port, path) that for the base resource which is operated upon by this
function. See also Overriding Resource URL Generation.

570

If the resource used is the result of a traversal, it must be location-aware. The
resource can also be the context of a URL dispatch; contexts found this way do not need
to be location-aware.

If a ‘virtual root path’ is present in the request environment (the value of the WSGI
environ key HTTP_X_VHM_ROOT), and the resource was obtained via traversal, the URL
path will not include the virtual root prefix (it will be stripped off the left hand side of the
generated URL).

For backwards compatibility purposes, this method is also aliased as the model_url
method of request.

response
This attribute is actually a “reified” property which returns an instance of the
pyramid.response.Response. class. The response object returned does not exist un-
til this attribute is accessed. Once it is accessed, subsequent accesses will return the same
Response object.

The request.response API is used by renderers. A render obtains the response object it
will return from a view that uses that renderer by accessing request.response. There-
fore, it’s possible to use the request.response API to set up a response object with “the
right” attributes (e.g. by calling request.response.set_cookie()) within a view
that uses a renderer. Mutations to this response object will be preserved in the response sent
to the client.

route_path(route_name, *elements, **kw)
Generates a path (aka a ‘relative URL’, a URL minus the host, scheme, and port) for a named
Pyramid route configuration.

This function accepts the same argument as pyramid.request.Request.route_url()
and performs the same duty. It just omits the host, port, and scheme information in the
return value; only the script_name, path, query parameters, and anchor data are present in the
returned string.

For example, if you’ve defined a route named ‘foobar’ with the path /{foo}/{bar}, this
call to route_path:

571

52. PYRAMID.REQUEST

request.route_path(’foobar’, foo=’1’, bar=’2’)

Will return the string /1/2.

Calling request.route_path(’route’) is the same as calling
request.route_url(’route’, _app_url=request.script_name).
pyramid.request.Request.route_path() is, in fact, implemented in terms of
:meth:‘pyramid.request.Request.route_url in just this way. As a result, any _app_url
passed within the **kw values to route_path will be ignored.

route_url(route_name, *elements, **kw)
Generates a fully qualified URL for a named Pyramid route configuration.

Use the route’s name as the first positional argument. Additional positional arguments
(*elements) are appended to the URL as path segments after it is generated.

Use keyword arguments to supply values which match any dynamic path elements in the route
definition. Raises a KeyError exception if the URL cannot be generated for any reason (not
enough arguments, for example).

For example, if you’ve defined a route named “foobar” with the path
{foo}/{bar}/*traverse:

request.route_url(’foobar’,
foo=’1’) => <KeyError exception>

request.route_url(’foobar’,
foo=’1’,
bar=’2’) => <KeyError exception>

request.route_url(’foobar’,
foo=’1’,
bar=’2’,
traverse=(’a’,’b’)) => http://e.com/1/2/a/b

request.route_url(’foobar’,
foo=’1’,
bar=’2’,
traverse=’/a/b’) => http://e.com/1/2/a/b

Values replacing :segment arguments can be passed as strings or Unicode objects. They
will be encoded to UTF-8 and URL-quoted before being placed into the generated URL.

572

Values replacing *remainder arguments can be passed as strings or tuples of Uni-
code/string values. If a tuple is passed as a *remainder replacement value, its values
are URL-quoted and encoded to UTF-8. The resulting strings are joined with slashes and
rendered into the URL. If a string is passed as a *remainder replacement value, it is tacked
on to the URL untouched.

If a keyword argument _query is present, it will be used to compose a query string that will
be tacked on to the end of the URL. The value of _querymust be a sequence of two-tuples or
a data structure with an .items()method that returns a sequence of two-tuples (presumably
a dictionary). This data structure will be turned into a query string per the documentation of
pyramid.encode.urlencode() function. After the query data is turned into a query
string, a leading ? is prepended, and the resulting string is appended to the generated URL.

Python data structures that are passed as _query which are sequences or
dictionaries are turned into a string under the same rules as when run through
urllib.urlencode() with the doseq argument equal to True. This means that
sequences can be passed as values, and a k=v pair will be placed into the query string for
each value.

If a keyword argument _anchor is present, its string representation will be used as a
named anchor in the generated URL (e.g. if _anchor is passed as foo and the route
URL is http://example.com/route/url, the resulting generated URL will be
http://example.com/route/url#foo).

If _anchor is passed as a string, it should be UTF-8 encoded. If _anchor is passed
as a Unicode object, it will be converted to UTF-8 before being appended to the URL. The
anchor value is not quoted in any way before being appended to the generated URL.

If both _anchor and _query are specified, the anchor element will always follow the query
element, e.g. http://example.com?foo=1#bar.

If a keyword _app_url is present, it will be used as the proto-
col/hostname/port/leading path prefix of the generated URL. For example, using
an _app_url of http://example.com:8080/foo would cause the URL
http://example.com:8080/foo/fleeb/flub to be returned from this
function if the expansion of the route pattern associated with the route_name
expanded to /fleeb/flub. If _app_url is not specified, the result of
request.application_url will be used as the prefix (the default).

This function raises a KeyError if the URL cannot be generated due to missing replacement
names. Extra replacement names are ignored.

573

52. PYRAMID.REQUEST

If the route object which matches the route_name argument has a pregenerator, the
*elements and **kw arguments arguments passed to this function might be augmented
or changed.

scheme
Gets and sets the wsgi.url_scheme key in the environment.

script_name
Gets and sets the SCRIPT_NAME key in the environment.

server_name
Gets and sets the SERVER_NAME key in the environment.

server_port
Gets and sets the SERVER_PORT key in the environment. Converts it using int.

session
Obtain the session object associated with this request. If a ses-
sion factory has not been registered during application configuration, a
pyramid.exceptions.ConfigurationError will be raised

static_path(path, **kw)
Generates a path (aka a ‘relative URL’, a URL minus the host, scheme, and port) for a static
resource.

This function accepts the same argument as pyramid.request.Request.current_static_url()
and performs the same duty. It just omits the host, port, and scheme information in the
return value; only the script_name, path, query parameters, and anchor data are present in the
returned string.

Example:

request.static_path(’mypackage:static/foo.css’) =>

/static/foo.css

Calling request.static_path(apath) is the same as calling
request.static_url(apath, _app_url=request.script_name).
pyramid.request.Request.static_path() is, in fact, implemented in terms
of :meth:‘pyramid.request.Request.static_url in just this way. As a result, any _app_url
passed within the **kw values to static_path will be ignored.

574

static_url(path, **kw)
Generates a fully qualified URL for a static asset. The asset must live within a location
defined via the pyramid.config.Configurator.add_static_view() configu-
ration declaration (see Serving Static Assets).

Example:

request.static_url(’mypackage:static/foo.css’) =>

http://example.com/static/foo.css

The path argument points at a file or directory on disk which a URL should be generated for.
The path may be either a relative path (e.g. static/foo.css) or a asset specification
(e.g. mypackage:static/foo.css). A path may not be an absolute filesystem path
(a ValueError will be raised if this function is supplied with an absolute path).

The purpose of the **kw argument is the same as the purpose of the
pyramid.request.Request.route_url() **kw argument. See the docu-
mentation for that function to understand the arguments which you can provide to it.
However, typically, you don’t need to pass anything as *kw when generating a static asset
URL.

This function raises a ValueError if a static view definition cannot be found which matches
the path specification.

str_GET
Return a MultiDict containing all the variables from the QUERY_STRING.

str_POST
Return a MultiDict containing all the variables from a form request. Returns an empty dict-
like object for non-form requests.

Form requests are typically POST requests, however PUT requests with an appropriate
Content-Type are also supported.

str_cookies
Return a plain dictionary of cookies as found in the request.

str_params
A dictionary-like object containing both the parameters from the query string and request
body.

str_postvars
Wraps a descriptor, with a deprecation warning or error

575

52. PYRAMID.REQUEST

str_queryvars
Wraps a descriptor, with a deprecation warning or error

tmpl_context
Template context (for Pylons apps)

upath_info
upath_property(‘PATH_INFO’)

url
The full request URL, including QUERY_STRING

urlargs
Return any positional variables matched in the URL.

Takes values from environ[’wsgiorg.routing_args’]. Systems like routes set
this value.

urlvars
Return any named variables matched in the URL.

Takes values from environ[’wsgiorg.routing_args’]. Systems like routes set
this value.

uscript_name
upath_property(‘SCRIPT_NAME’)

user_agent
Gets and sets the User-Agent header (HTTP spec section 14.43).

For information about the API of a multidict structure (such as that used as request.GET,
request.POST, and request.params), see pyramid.interfaces.IMultiDict.

576

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.43

CHAPTER

FIFTYTHREE

PYRAMID.RESPONSE

class Response(body=None, status=None, headerlist=None, app_iter=None, request=None,
content_type=None, conditional_response=None, **kw)

RequestClass
alias of Request

accept_ranges
Gets and sets the Accept-Ranges header (HTTP spec section 14.5).

age
Gets and sets the Age header (HTTP spec section 14.6). Converts it using int.

allow
Gets and sets the Allow header (HTTP spec section 14.7). Converts it using list.

app_iter
Returns the app_iter of the response.

If body was set, this will create an app_iter from that body (a single-item list)

app_iter_range(start, stop)
Return a new app_iter built from the response app_iter, that serves up only the given
start:stop range.

body
The body of the response, as a str. This will read in the entire app_iter if necessary.

577

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.7

53. PYRAMID.RESPONSE

body_file
A file-like object that can be used to write to the body. If you passed in a list app_iter, that
app_iter will be modified by writes.

cache_control
Get/set/modify the Cache-Control header (HTTP spec section 14.9)

charset
Get/set the charset (in the Content-Type)

conditional_response_app(environ, start_response)
Like the normal __call__ interface, but checks conditional headers:

•If-Modified-Since (304 Not Modified; only on GET, HEAD)

•If-None-Match (304 Not Modified; only on GET, HEAD)

•Range (406 Partial Content; only on GET, HEAD)

content_disposition
Gets and sets the Content-Disposition header (HTTP spec section 19.5.1).

content_encoding
Gets and sets the Content-Encoding header (HTTP spec section 14.11).

content_language
Gets and sets the Content-Language header (HTTP spec section 14.12). Converts it
using list.

content_length
Gets and sets the Content-Length header (HTTP spec section 14.17). Converts it using
int.

content_location
Gets and sets the Content-Location header (HTTP spec section 14.14).

content_md5
Gets and sets the Content-MD5 header (HTTP spec section 14.14).

content_range
Gets and sets the Content-Range header (HTTP spec section 14.16). Converts it using
ContentRange object.

578

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
http://www.w3.org/Protocols/rfc2616/rfc2616-sec19.html#sec19.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.11
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.12
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.14
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.14
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.16

content_type
Get/set the Content-Type header (or None), without the charset or any parameters.

If you include parameters (or ; at all) when setting the content_type, any existing parameters
will be deleted; otherwise they will be preserved.

content_type_params
A dictionary of all the parameters in the content type.

(This is not a view, set to change, modifications of the dict would not be applied otherwise)

copy()
Makes a copy of the response

date
Gets and sets the Date header (HTTP spec section 14.18). Converts it using HTTP date.

delete_cookie(key, path=’/’, domain=None)
Delete a cookie from the client. Note that path and domain must match how the cookie was
originally set.

This sets the cookie to the empty string, and max_age=0 so that it should expire immediately.

encode_content(encoding=’gzip’, lazy=False)
Encode the content with the given encoding (only gzip and identity are supported).

environ
Get/set the request environ associated with this response, if any.

etag
Gets and sets the ETag header (HTTP spec section 14.19). Converts it using Entity tag.

expires
Gets and sets the Expires header (HTTP spec section 14.21). Converts it using HTTP date.

classmethod from_file(fp)
Reads a response from a file-like object (it must implement .read(size) and
.readline()).

It will read up to the end of the response, not the end of the file.

This reads the response as represented by str(resp); it may not read every valid HTTP
response properly. Responses must have a Content-Length

579

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.18
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.19
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.21

53. PYRAMID.RESPONSE

headerlist
The list of response headers

headers
The headers in a dictionary-like object

last_modified
Gets and sets the Last-Modified header (HTTP spec section 14.29). Converts it using
HTTP date.

location
Gets and sets the Location header (HTTP spec section 14.30).

md5_etag(body=None, set_content_md5=False)
Generate an etag for the response object using an MD5 hash of the body (the body parameter,
or self.body if not given)

Sets self.etag If set_content_md5 is True sets self.content_md5 as well

merge_cookies(resp)
Merge the cookies that were set on this response with the given resp object (which can be any
WSGI application).

If the resp is a webob.Response object, then the other object will be modified in-place.

pragma
Gets and sets the Pragma header (HTTP spec section 14.32).

request
Return the request associated with this response if any.

retry_after
Gets and sets the Retry-After header (HTTP spec section 14.37). Converts it using HTTP
date or delta seconds.

server
Gets and sets the Server header (HTTP spec section 14.38).

set_cookie(key, value=’‘, max_age=None, path=’/’, domain=None, secure=False,
httponly=False, comment=None, expires=None, overwrite=False)

Set (add) a cookie for the response

status
The status string

580

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.29
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.30
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.32
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.37
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.38

53.1. FUNCTIONS

status_code
Wraps a descriptor, with a deprecation warning or error

status_int
The status as an integer

text
Get/set the unicode value of the body (using the charset of the Content-Type)

ubody
Deprecated alias for .text

unicode_body
Deprecated alias for .text

unset_cookie(key, strict=True)
Unset a cookie with the given name (remove it from the response).

vary
Gets and sets the Vary header (HTTP spec section 14.44). Converts it using list.

www_authenticate
Gets and sets the WWW-Authenticate header (HTTP spec section 14.47). Converts it
using parse_auth and serialize_auth.

53.1 Functions

response_adapter(*types_or_ifaces)
Decorator activated via a scan which treats the function being decorated as a response adapter for
the set of types or interfaces passed as *types_or_ifaces to the decorator constructor.

For example, if you scan the following response adapter:

from pyramid.response import Response
from pyramid.response import response_adapter

@response_adapter(int)
def myadapter(i):

return Response(status=i)

You can then return an integer from your view callables, and it will be converted into a response
with the integer as the status code.

More than one type or interface can be passed as a constructor argument. The decorated response
adapter will be called for each type or interface.

581

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.44
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.47

53. PYRAMID.RESPONSE

import json

from pyramid.response import Response
from pyramid.response import response_adapter

@response_adapter(dict, list)
def myadapter(ob):

return Response(json.dumps(ob))

This method will have no effect until a scan is performed agains the package or module which
contains it, ala:

from pyramid.config import Configurator
config = Configurator()
config.scan(’somepackage_containing_adapters’)

582

CHAPTER

FIFTYFOUR

PYRAMID.SCRIPTING

get_root(app, request=None)
Return a tuple composed of (root, closer) when provided a router instance as the app
argument. The root returned is the application root object. The closer returned is a callable
(accepting no arguments) that should be called when your scripting application is finished using the
root.

request is passed to the Pyramid application root factory to compute the root. If
request is None, a default will be constructed using the registry’s Request Factory via the
pyramid.interfaces.IRequestFactory.blank() method.

prepare(request=None, registry=None)
This function pushes data onto the Pyramid threadlocal stack (request and registry), making those
objects ‘current’. It returns a dictionary useful for bootstrapping a Pyramid application in a scripting
environment.

request is passed to the Pyramid application root factory to compute the root. If
request is None, a default will be constructed using the registry’s Request Factory via the
pyramid.interfaces.IRequestFactory.blank() method.

If registry is not supplied, the last registry loaded from
pyramid.config.global_registries will be used. If you have loaded more than
one Pyramid application in the current process, you may not want to use the last registry loaded,
thus you can search the global_registries and supply the appropriate one based on your
own criteria.

The function returns a dictionary composed of root, closer, registry, request and
root_factory. The root returned is the application’s root resource object. The closer
returned is a callable (accepting no arguments) that should be called when your scripting applica-
tion is finished using the root. registry is the registry object passed or the last registry loaded
into pyramid.config.global_registries if no registry is passed. request is the re-
quest object passed or the constructed request if no request is passed. root_factory is the root
factory used to construct the root.

583

54. PYRAMID.SCRIPTING

584

CHAPTER

FIFTYFIVE

PYRAMID.SECURITY

55.1 Authentication API Functions

authenticated_userid(request)
Return the userid of the currently authenticated user or None if there is no authentication policy in
effect or there is no currently authenticated user.

unauthenticated_userid(request)
Return an object which represents the claimed (not verified) user id of the credentials present in
the request. None if there is no authentication policy in effect or there is no user data associated
with the current request. This differs from authenticated_userid(), because the effective
authentication policy will not ensure that a record associated with the userid exists in persistent
storage.

effective_principals(request)
Return the list of ‘effective’ principal identifiers for the request. This will include the userid of
the currently authenticated user if a user is currently authenticated. If no authentication policy is in
effect, this will return an empty sequence.

forget(request)
Return a sequence of header tuples (e.g. [(’Set-Cookie’, ’foo=abc’)]) suitable for ‘for-
getting’ the set of credentials possessed by the currently authenticated user. A common usage
might look like so within the body of a view function (response is assumed to be an WebOb
-style response object computed previously by the view code):

585

55. PYRAMID.SECURITY

from pyramid.security import forget
headers = forget(request)
response.headerlist.extend(headers)
return response

If no authentication policy is in use, this function will always return an empty sequence.

remember(request, principal, **kw)
Return a sequence of header tuples (e.g. [(’Set-Cookie’, ’foo=abc’)]) suitable for ‘re-
membering’ a set of credentials implied by the data passed as principal and *kw using the
current authentication policy. Common usage might look like so within the body of a view func-
tion (response is assumed to be a WebOb -style response object computed previously by the
view code):

from pyramid.security import remember
headers = remember(request, ’chrism’, password=’123’, max_age=’86400’)
response.headerlist.extend(headers)
return response

If no authentication policy is in use, this function will always return an empty sequence. If used,
the composition and meaning of **kw must be agreed upon by the calling code and the effective
authentication policy.

55.2 Authorization API Functions

has_permission(permission, context, request)
Provided a permission (a string or unicode object), a context (a resource instance) and a request
object, return an instance of pyramid.security.Allowed if the permission is granted in this
context to the user implied by the request. Return an instance of pyramid.security.Denied
if this permission is not granted in this context to this user. This function delegates to the current
authentication and authorization policies. Return pyramid.security.Allowed uncondition-
ally if no authentication policy has been configured in this application.

principals_allowed_by_permission(context, permission)
Provided a context (a resource object), and a permission (a string or unicode object), if a
authorization policy is in effect, return a sequence of principal ids that possess the permission in the
context. If no authorization policy is in effect, this will return a sequence with the single value
pyramid.security.Everyone (the special principal identifier representing all principals).

586

55.3. CONSTANTS

even if an authorization policy is in effect, some (exotic) authorization poli-
cies may not implement the required machinery for this function; those will cause a
NotImplementedError exception to be raised when this function is invoked.

view_execution_permitted(context, request, name=’‘)
If the view specified by context and name is protected by a permission, check the permission
associated with the view using the effective authentication/authorization policies and the request.
Return a boolean result. If no authorization policy is in effect, or if the view is not protected by a
permission, return True.

55.3 Constants

Everyone
The special principal id named ‘Everyone’. This principal id is granted to all requests. Its actual
value is the string ‘system.Everyone’.

Authenticated
The special principal id named ‘Authenticated’. This principal id is granted to all requests which
contain any other non-Everyone principal id (according to the authentication policy). Its actual
value is the string ‘system.Authenticated’.

ALL_PERMISSIONS
An object that can be used as the permission member of an ACE which matches all permissions
unconditionally. For example, an ACE that uses ALL_PERMISSIONS might be composed like so:
(’Deny’, ’system.Everyone’, ALL_PERMISSIONS).

DENY_ALL
A convenience shorthand ACE that defines (’Deny’, ’system.Everyone’,
ALL_PERMISSIONS). This is often used as the last ACE in an ACL in systems that use
an “inheriting” security policy, representing the concept “don’t inherit any other ACEs”.

NO_PERMISSION_REQUIRED
A special permission which indicates that the view should always be executable by entirely anony-
mous users, regardless of the default permission, bypassing any authorization policy that may be in
effect. Its actual value is the string ‘__no_permission_required__’.

587

55. PYRAMID.SECURITY

55.4 Return Values

Allow
The ACE “action” (the first element in an ACE e.g. (Allow, Everyone, ’read’) that
means allow access. A sequence of ACEs makes up an ACL. It is a string, and it’s actual value is
“Allow”.

Deny
The ACE “action” (the first element in an ACE e.g. (Deny, ’george’, ’read’) that means
deny access. A sequence of ACEs makes up an ACL. It is a string, and it’s actual value is “Deny”.

class ACLDenied
An instance of ACLDenied represents that a security check made explicitly against ACL was
denied. It evaluates equal to all boolean false types. It also has the following attributes: acl,
ace, permission, principals, and context. These attributes indicate the security values
involved in the request. Its __str__ method prints a summary of these attributes for debugging
purposes. The same summary is available as the msg attribute.

class ACLAllowed
An instance of ACLAllowed represents that a security check made explicitly against ACL was
allowed. It evaluates equal to all boolean true types. It also has the following attributes: acl,
ace, permission, principals, and context. These attributes indicate the security values
involved in the request. Its __str__ method prints a summary of these attributes for debugging
purposes. The same summary is available as the msg attribute.

class Denied
An instance of Denied is returned when a security-related API or other Pyramid code denies an
action unrelated to an ACL check. It evaluates equal to all boolean false types. It has an attribute
named msg describing the circumstances for the deny.

class Allowed
An instance of Allowed is returned when a security-related API or other Pyramid code allows an
action unrelated to an ACL check. It evaluates equal to all boolean true types. It has an attribute
named msg describing the circumstances for the allow.

588

CHAPTER

FIFTYSIX

PYRAMID.SETTINGS

get_settings()
Return a deployment settings object for the current application. The object is a dictionary-like ob-
ject that contains key/value pairs based on the dictionary passed as the settings argument to the
pyramid.config.Configurator constructor or the pyramid.router.make_app()
API.

This method is deprecated as of Pyramid 1.0. Use
pyramid.threadlocal.get_current_registry().settings in-
stead or use the settings attribute of the registry available from the request
(request.registry.settings).

asbool(s)
Return the boolean value True if the case-lowered value of string input s is any of t, true, y,
on, or 1, otherwise return the boolean value False. If s is the value None, return False. If s is
already one of the boolean values True or False, return it.

589

56. PYRAMID.SETTINGS

590

CHAPTER

FIFTYSEVEN

PYRAMID.TESTING

setUp(registry=None, request=None, hook_zca=True, autocommit=True, settings=None)
Set Pyramid registry and request thread locals for the duration of a single unit test.

Use this function in the setUp method of a unittest test case which directly or indirectly uses:

•any method of the pyramid.config.Configurator object returned by this function.

•the pyramid.threadlocal.get_current_registry() or
pyramid.threadlocal.get_current_request() functions.

If you use the get_current_* functions (or call Pyramid code that uses these functions) without
calling setUp, pyramid.threadlocal.get_current_registry() will return a global
application registry, which may cause unit tests to not be isolated with respect to registrations they
perform.

If the registry argument is None, a new empty application registry will be created (an instance
of the pyramid.registry.Registry class). If the registry argument is not None, the
value passed in should be an instance of the pyramid.registry.Registry class or a suitable
testing analogue.

After setUp is finished, the registry returned by the
pyramid.threadlocal.get_current_request() function will be the passed
(or constructed) registry until pyramid.testing.tearDown() is called (or
pyramid.testing.setUp() is called again) .

If the hook_zca argument is True, setUp will attempt to per-
form the operation zope.component.getSiteManager.sethook(

591

57. PYRAMID.TESTING

pyramid.threadlocal.get_current_registry), which will cause the Zope
Component Architecture global API (e.g. zope.component.getSiteManager(),
zope.component.getAdapter(), and so on) to use the registry constructed by setUp as
the value it returns from zope.component.getSiteManager(). If the zope.component
package cannot be imported, or if hook_zca is False, the hook will not be set.

If settings is not None, it must be a dictionary representing the values passed to a Configurator
as its settings= argument.

This function returns an instance of the pyramid.config.Configurator class,
which can be used for further configuration to set up an environment suitable for a
unit or integration test. The registry attribute attached to the Configurator in-
stance represents the ‘current’ application registry; the same registry will be returned by
pyramid.threadlocal.get_current_registry() during the execution of the test.

tearDown(unhook_zca=True)
Undo the effects pyramid.testing.setUp(). Use this function in the tearDown method
of a unit test that uses pyramid.testing.setUp() in its setUp method.

If the unhook_zca argument is True (the default), call
zope.component.getSiteManager.reset(). This undoes the action of
pyramid.testing.setUp() called with the argument hook_zca=True. If
zope.component cannot be imported, ignore the argument.

cleanUp(*arg, **kw)
pyramid.testing.cleanUp() is an alias for pyramid.testing.setUp().

class DummyResource(__name__=None, __parent__=None, __provides__=None, **kw)
A dummy Pyramid resource object.

clone(__name__=<object object at 0x4b49240>, __parent__=<object object at
0x4b49240>, **kw)

Create a clone of the resource object. If __name__ or __parent__ arguments are passed,
use these values to override the existing __name__ or __parent__ of the resource. If
any extra keyword args are passed in via the kw argument, use these keywords to add to or
override existing resource keywords (attributes).

items()
Return the items set by __setitem__

keys()
Return the keys set by __setitem__

values()
Return the values set by __setitem__

592

class DummyRequest(params=None, environ=None, headers=None, path=’/’, cookies=None,
post=None, **kw)

A DummyRequest object (incompletely) imitates a request object.

The params, environ, headers, path, and cookies arguments correspond to their WebOb
equivalents.

The post argument, if passed, populates the request’s POST attribute, but not params, in order
to allow testing that the app accepts data for a given view only from POST requests. This argument
also sets self.method to “POST”.

Extra keyword arguments are assigned as attributes of the request itself.

Note that DummyRequest does not have complete fidelity with a “real” request. For example, by
default, the DummyRequest GET and POST attributes are of type dict, unlike a normal Request’s
GET and POST, which are of type MultiDict. If your code uses the features of MultiDict,
you should either use a”real” pyramid.request.Request or adapt your DummyRequest by
replacing the attributes with MultiDict instances.

Other similar incompatibilities exist. If you need all the features of a Request, use the
pyramid.request.Request class itself rather than this class while writing tests.

class DummyTemplateRenderer(string_response=’‘)
An instance of this class is returned from pyramid.config.Configurator.testing_add_renderer().
It has a helper function (assert_) that makes it possible to make an assertion which compares
data passed to the renderer by the view function against expected key/value pairs.

assert_(**kw)
Accept an arbitrary set of assertion key/value pairs. For each assertion key/value pair as-
sert that the renderer (eg. pyramid.renderer.render_to_response()) received
the key with a value that equals the asserted value. If the renderer did not receive the
key at all, or the value received by the renderer doesn’t match the assertion value, raise an
AssertionError.

593

57. PYRAMID.TESTING

594

CHAPTER

FIFTYEIGHT

PYRAMID.THREADLOCAL

get_current_request()
Return the currently active request or None if no request is currently active.

This function should be used extremely sparingly, usually only in unit testing code. it’s almost
always usually a mistake to use get_current_request outside a testing context because its
usage makes it possible to write code that can be neither easily tested nor scripted.

get_current_registry()
Return the currently active application registry or the global application registry if no request is
currently active.

This function should be used extremely sparingly, usually only in unit testing code. it’s almost
always usually a mistake to use get_current_registry outside a testing context because its
usage makes it possible to write code that can be neither easily tested nor scripted.

595

58. PYRAMID.THREADLOCAL

596

CHAPTER

FIFTYNINE

PYRAMID.TRAVERSAL

find_interface(resource, class_or_interface)
Return the first resource found in the lineage of resourcewhich, a) if class_or_interface
is a Python class object, is an instance of the class or any subclass of that class or b) if
class_or_interface is a interface, provides the specified interface. Return None if no re-
source providing interface_or_class can be found in the lineage. The resource passed
in must be location-aware.

find_resource(resource, path)
Given a resource object and a string or tuple representing a path (such
as the return value of pyramid.traversal.resource_path() or
pyramid.traversal.resource_path_tuple()), return a resource in this applica-
tion’s resource tree at the specified path. The resource passed in must be location-aware. If the
path cannot be resolved (if the respective node in the resource tree does not exist), a KeyError
will be raised.

This function is the logical inverse of pyramid.traversal.resource_path() and
pyramid.traversal.resource_path_tuple(); it can resolve any path string or tuple
generated by either of those functions.

Rules for passing a string as the path argument: if the first character in the path string is the / char-
acter, the path is considered absolute and the resource tree traversal will start at the root resource. If
the first character of the path string is not the / character, the path is considered relative and resource
tree traversal will begin at the resource object supplied to the function as the resource argument.
If an empty string is passed as path, the resource passed in will be returned. Resource path
strings must be escaped in the following manner: each Unicode path segment must be encoded
as UTF-8 and as each path segment must escaped via Python’s urllib.quote. For example,

597

59. PYRAMID.TRAVERSAL

/path/to%20the/La%20Pe%C3%B1a (absolute) or to%20the/La%20Pe%C3%B1a (rela-
tive). The pyramid.traversal.resource_path() function generates strings which fol-
low these rules (albeit only absolute ones).

Rules for passing a tuple as the path argument: if the first element in the path tuple is the empty
string (for example (”, ’a’, ’b’, ’c’), the path is considered absolute and the resource
tree traversal will start at the resource tree root object. If the first element in the path tuple is not
the empty string (for example (’a’, ’b’, ’c’)), the path is considered relative and resource
tree traversal will begin at the resource object supplied to the function as the resource argument.
If an empty sequence is passed as path, the resource passed in itself will be returned. No
URL-quoting or UTF-8-encoding of individual path segments within the tuple is required (each
segment may be any string or unicode object representing a resource name). Resource path tuples
generated by pyramid.traversal.resource_path_tuple() can always be resolved by
find_resource.

For backwards compatibility purposes, this function can also be imported as
pyramid.traversal.find_model(), although doing so will emit a deprecation warn-
ing.

find_root(resource)
Find the root node in the resource tree to which resource belongs. Note that resource should
be location-aware. Note that the root resource is available in the request object by accessing the
request.root attribute.

resource_path(resource, *elements)
Return a string object representing the absolute physical path of the resource object based on its po-
sition in the resource tree, e.g /foo/bar. Any positional arguments passed in as elements will
be appended as path segments to the end of the resource path. For instance, if the resource’s path is
/foo/bar and elements equals (’a’, ’b’), the returned string will be /foo/bar/a/b.
The first character in the string will always be the / character (a leading / character in a path string
represents that the path is absolute).

Resource path strings returned will be escaped in the following manner: each unicode path segment
will be encoded as UTF-8 and each path segment will be escaped via Python’s urllib.quote.
For example, /path/to%20the/La%20Pe%C3%B1a.

This function is a logical inverse of pyramid.traversal.find_resource: it can be used
to generate path references that can later be resolved via that function.

The resource passed in must be location-aware.

598

Each segment in the path string returned will use the __name__ attribute of
the resource it represents within the resource tree. Each of these segments should be
a unicode or string object (as per the contract of location-awareness). However, no
conversion or safety checking of resource names is performed. For instance, if one
of the resources in your tree has a __name__ which (by error) is a dictionary, the
pyramid.traversal.resource_path() function will attempt to append it to a string
and it will cause a pyramid.exceptions.URLDecodeError.

The root resource must have a __name__ attribute with a value of either None or the
empty string for paths to be generated properly. If the root resource has a non-null __name__
attribute, its name will be prepended to the generated path rather than a single leading ‘/’ char-
acter.

For backwards compatibility purposes, this function can also be imported as
model_path, although doing so will cause a deprecation warning to be emitted.

resource_path_tuple(resource, *elements)
Return a tuple representing the absolute physical path of the resource object based on its position
in a resource tree, e.g (”, ’foo’, ’bar’). Any positional arguments passed in as elements
will be appended as elements in the tuple representing the resource path. For instance, if the re-
source’s path is (”, ’foo’, ’bar’) and elements equals (’a’, ’b’), the returned tuple
will be (”, ’foo’, ’bar’, ’a’, ’b’). The first element of this tuple will always be the
empty string (a leading empty string element in a path tuple represents that the path is absolute).

This function is a logical inverse of pyramid.traversal.find_resource(): it can be
used to generate path references that can later be resolved by that function.

The resource passed in must be location-aware.

Each segment in the path tuple returned will equal the __name__ attribute of the resource
it represents within the resource tree. Each of these segments should be a unicode or string
object (as per the contract of location-awareness). However, no conversion or safety checking of
resource names is performed. For instance, if one of the resources in your tree has a __name__
which (by error) is a dictionary, that dictionary will be placed in the path tuple; no warning or
error will be given.

599

59. PYRAMID.TRAVERSAL

The root resource must have a __name__ attribute with a value of either None or the
empty string for path tuples to be generated properly. If the root resource has a non-null
__name__ attribute, its name will be the first element in the generated path tuple rather than
the empty string.

For backwards compatibility purposes, this function can also be imported as
model_path_tuple, although doing so will cause a deprecation warning to be emitted.

quote_path_segment(segment, safe=’‘)
Return a quoted representation of a ‘path segment’ (such as the string __name__ attribute of a
resource) as a string. If the segment passed in is a unicode object, it is converted to a UTF-8
string, then it is URL-quoted using Python’s urllib.quote. If the segment passed in is a
string, it is URL-quoted using Python’s urllib.quote. If the segment passed in is not a string
or unicode object, an error will be raised. The return value of quote_path_segment is always
a string, never Unicode.

You may pass a string of characters that need not be encoded as the safe argument to this function.
This corresponds to the safe argument to urllib.quote.

The return value for each segment passed to this function is cached in a module-scope
dictionary for speed: the cached version is returned when possible rather than recomputing the
quoted version. No cache emptying is ever done for the lifetime of an application, however.
If you pass arbitrary user-supplied strings to this function (as opposed to some bounded set of
values from a ‘working set’ known to your application), it may become a memory leak.

virtual_root(resource, request)
Provided any resource and a request object, return the resource object representing the virtual
root of the current request. Using a virtual root in a traversal -based Pyramid application permits
rooting, for example, the resource at the traversal path /cms at http://example.com/ instead
of rooting it at http://example.com/cms/.

If the resource passed in is a context obtained via traversal, and if the HTTP_X_VHM_ROOT
key is in the WSGI environment, the value of this key will be treated as a ‘virtual root path’: the
pyramid.traversal.find_resource() API will be used to find the virtual root resource
using this path; if the resource is found, it will be returned. If the HTTP_X_VHM_ROOT key is is
not present in the WSGI environment, the physical root of the resource tree will be returned instead.

Virtual roots are not useful at all in applications that use URL dispatch. Contexts obtained via URL
dispatch don’t really support being virtually rooted (each URL dispatch context is both its own
physical and virtual root). However if this API is called with a resource argument which is a
context obtained via URL dispatch, the resource passed in will be returned unconditionally.

600

traverse(resource, path)
Given a resource object as resource and a string or tuple representing a path as
path (such as the return value of pyramid.traversal.resource_path()
or pyramid.traversal.resource_path_tuple() or the value of
request.environ[’PATH_INFO’]), return a dictionary with the keys context, root,
view_name, subpath, traversed, virtual_root, and virtual_root_path.

A definition of each value in the returned dictionary:

•context: The context (a resource object) found via traversal or url dispatch. If the path
passed in is the empty string, the value of the resource argument passed to this function is
returned.

•root: The resource object at which traversal begins. If the resource passed in was
found via url dispatch or if the path passed in was relative (non-absolute), the value of
the resource argument passed to this function is returned.

•view_name: The view name found during traversal or url dispatch; if the resource was
found via traversal, this is usually a representation of the path segment which directly follows
the path to the context in the path. The view_name will be a Unicode object or the
empty string. The view_name will be the empty string if there is no element which follows
the context path. An example: if the path passed is /foo/bar, and a resource object is
found at /foo (but not at /foo/bar), the ‘view name’ will be u’bar’. If the resource
was found via urldispatch, the view_name will be the name the route found was registered
with.

•subpath: For a resource found via traversal, this is a sequence of path segments found
in the path that follow the view_name (if any). Each of these items is a Unicode object.
If no path segments follow the view_name, the subpath will be the empty sequence. An
example: if the path passed is /foo/bar/baz/buz, and a resource object is found at /foo
(but not /foo/bar), the ‘view name’ will be u’bar’ and the subpath will be [u’baz’,
u’buz’]. For a resource found via url dispatch, the subpath will be a sequence of values
discerned from *subpath in the route pattern matched or the empty sequence.

•traversed: The sequence of path elements traversed from the root to find the context
object during traversal. Each of these items is a Unicode object. If no path segments were
traversed to find the context object (e.g. if the path provided is the empty string), the
traversed value will be the empty sequence. If the resource is a resource found via url
dispatch, traversed will be None.

•virtual_root: A resource object representing the ‘virtual’ root of the resource tree being
traversed during traversal. See Virtual Hosting for a definition of the virtual root object. If
no virtual hosting is in effect, and the path passed in was absolute, the virtual_root
will be the physical root resource object (the object at which traversal begins). If the
resource passed in was found via URL dispatch or if the path passed in was relative,
the virtual_root will always equal the root object (the resource passed in).

601

59. PYRAMID.TRAVERSAL

•virtual_root_path – If traversal was used to find the resource, this will be the
sequence of path elements traversed to find the virtual_root resource. Each of these
items is a Unicode object. If no path segments were traversed to find the virtual_root
resource (e.g. if virtual hosting is not in effect), the traversed value will be the empty list.
If url dispatch was used to find the resource, this will be None.

If the path cannot be resolved, a KeyError will be raised.

Rules for passing a string as the path argument: if the first character in the path string
is the with the / character, the path will considered absolute and the resource tree traver-
sal will start at the root resource. If the first character of the path string is not the /
character, the path is considered relative and resource tree traversal will begin at the re-
source object supplied to the function as the resource argument. If an empty string
is passed as path, the resource passed in will be returned. Resource path strings
must be escaped in the following manner: each Unicode path segment must be encoded as
UTF-8 and each path segment must escaped via Python’s urllib.quote. For example,
/path/to%20the/La%20Pe%C3%B1a (absolute) or to%20the/La%20Pe%C3%B1a (rela-
tive). The pyramid.traversal.resource_path() function generates strings which fol-
low these rules (albeit only absolute ones).

Rules for passing a tuple as the path argument: if the first element in the path tuple is the empty
string (for example (”, ’a’, ’b’, ’c’), the path is considered absolute and the resource
tree traversal will start at the resource tree root object. If the first element in the path tuple is not the
empty string (for example (’a’, ’b’, ’c’)), the path is considered relative and resource tree
traversal will begin at the resource object supplied to the function as the resource argument. If
an empty sequence is passed as path, the resource passed in itself will be returned. No URL-
quoting or UTF-8-encoding of individual path segments within the tuple is required (each segment
may be any string or unicode object representing a resource name).

Explanation of the conversion of path segment values to Unicode during traversal: Each segment
is URL-unquoted, and decoded into Unicode. Each segment is assumed to be encoded using the
UTF-8 encoding (or a subset, such as ASCII); a pyramid.exceptions.URLDecodeError
is raised if a segment cannot be decoded. If a segment name is empty or if it is ., it is ignored.
If a segment name is .., the previous segment is deleted, and the .. is ignored. As a result
of this process, the return values view_name, each element in the subpath, each element in
traversed, and each element in the virtual_root_path will be Unicode as opposed to a
string, and will be URL-decoded.

traversal_path(path)
Given a PATH_INFO string (slash-separated path segments), return a tuple representing that path
which can be used to traverse a resource tree.

The PATH_INFO is split on slashes, creating a list of segments. Each segment is URL-unquoted,
and subsequently decoded into Unicode. Each segment is assumed to be encoded using the UTF-8

602

encoding (or a subset, such as ASCII); a pyramid.exceptions.URLDecodeError is raised
if a segment cannot be decoded. If a segment name is empty or if it is ., it is ignored. If a segment
name is .., the previous segment is deleted, and the .. is ignored.

If this function is passed a Unicode object instead of a string, that Unicode object must directly
encodeable to ASCII. For example, u’/foo’ will work but u’/<unprintable unicode>’ (a Unicode
object with characters that cannot be encoded to ascii) will not.

Examples:

/

()

/foo/bar/baz

(u’foo’, u’bar’, u’baz’)

foo/bar/baz

(u’foo’, u’bar’, u’baz’)

/foo/bar/baz/

(u’foo’, u’bar’, u’baz’)

/foo//bar//baz/

(u’foo’, u’bar’, u’baz’)

/foo/bar/baz/..

(u’foo’, u’bar’)

/my%20archives/hello

(u’my archives’, u’hello’)

/archives/La%20Pe%C3%B1a

(u’archives’, u’<unprintable unicode>’)

This function does not generate the same type of tuples that
pyramid.traversal.resource_path_tuple() does. In particular,
the leading empty string is not present in the tuple it returns, unlike tu-
ples returned by pyramid.traversal.resource_path_tuple(). As
a result, tuples generated by traversal_path are not resolveable by the
pyramid.traversal.find_resource() API. traversal_path is a function
mostly used by the internals of Pyramid and by people writing their own traversal machinery,
as opposed to users writing applications in Pyramid.

603

59. PYRAMID.TRAVERSAL

604

CHAPTER

SIXTY

PYRAMID.URL

Utility functions for dealing with URLs in pyramid

resource_url(context, request, *elements, query=None, anchor=None)
This is a backwards compatibility function. Its result is the same as calling:

request.resource_url(resource, *elements, **kw)

See pyramid.request.Request.resource_url() for more information.

route_url(route_name, request, *elements, **kw)
This is a backwards compatibility function. Its result is the same as calling:

request.route_url(route_name, *elements, **kw)

See pyramid.request.Request.route_url() for more information.

current_route_url(request, *elements, **kw)
This is a backwards compatibility function. Its result is the same as calling:

request.current_route_url(*elements, **kw)

See pyramid.request.Request.current_route_url() for more information.

route_path(route_name, request, *elements, **kw)
This is a backwards compatibility function. Its result is the same as calling:

605

60. PYRAMID.URL

request.route_path(route_name, *elements, **kw)

See pyramid.request.Request.route_path() for more information.

current_route_path(request, *elements, **kw)
This is a backwards compatibility function. Its result is the same as calling:

request.current_route_path(*elements, **kw)

See pyramid.request.Request.current_route_path() for more information.

static_url(path, request, **kw)
This is a backwards compatibility function. Its result is the same as calling:

request.static_url(path, **kw)

See pyramid.request.Request.static_url() for more information.

static_path(path, request, **kw)
This is a backwards compatibility function. Its result is the same as calling:

request.static_path(path, **kw)

See pyramid.request.Request.static_path() for more information.

urlencode(query, doseq=True)
An alternate implementation of Python’s stdlib urllib.urlencode function which accepts unicode
keys and values within the query dict/sequence; all Unicode keys and values are first converted to
UTF-8 before being used to compose the query string.

The value of query must be a sequence of two-tuples representing key/value pairs or an object
(often a dictionary) with an .items() method that returns a sequence of two-tuples representing
key/value pairs.

For minimal calling convention backwards compatibility, this version of urlencode accepts but ig-
nores a second argument conventionally named doseq. The Python stdlib version behaves differ-
ently when doseq is False and when a sequence is presented as one of the values. This version
always behaves in the doseq=True mode, no matter what the value of the second argument.

See the Python stdlib documentation for urllib.urlencode for more information.

606

http://docs.python.org/library/urllib.html

CHAPTER

SIXTYONE

PYRAMID.VIEW

render_view_to_response(context, request, name=’‘, secure=True)
Call the view callable configured with a view configuration that matches the view name name reg-
istered against the specified context and request and return a response object. This function
will return None if a corresponding view callable cannot be found (when no view configuration
matches the combination of name / context / and request).

If secure‘ is True, and the view callable found is protected by a permission, the permission will be
checked before calling the view function. If the permission check disallows view execution (based
on the current authorization policy), a pyramid.httpexceptions.HTTPForbidden ex-
ception will be raised. The exception’s args attribute explains why the view access was disal-
lowed.

If secure is False, no permission checking is done.

render_view_to_iterable(context, request, name=’‘, secure=True)
Call the view callable configured with a view configuration that matches the view name name
registered against the specified context and request and return an iterable object which rep-
resents the body of a response. This function will return None if a corresponding view callable
cannot be found (when no view configuration matches the combination of name / context / and
request). Additionally, this function will raise a ValueError if a view function is found and
called but the view function’s result does not have an app_iter attribute.

You can usually get the string representation of the return value of this function by calling
”.join(iterable), or just use pyramid.view.render_view() instead.

If secure is True, and the view is protected by a permission, the permission will be checked
before the view function is invoked. If the permission check disallows view execution (based on the
current authentication policy), a pyramid.httpexceptions.HTTPForbidden exception
will be raised; its args attribute explains why the view access was disallowed.

If secure is False, no permission checking is done.

607

61. PYRAMID.VIEW

render_view(context, request, name=’‘, secure=True)
Call the view callable configured with a view configuration that matches the view name name reg-
istered against the specified context and request and unwind the view response’s app_iter
(see View Callable Responses) into a single string. This function will return None if a correspond-
ing view callable cannot be found (when no view configuration matches the combination of name /
context / and request). Additionally, this function will raise a ValueError if a view func-
tion is found and called but the view function’s result does not have an app_iter attribute. This
function will return None if a corresponding view cannot be found.

If secure is True, and the view is protected by a permission, the permission will be checked
before the view is invoked. If the permission check disallows view execution (based on the cur-
rent authorization policy), a pyramid.httpexceptions.HTTPForbidden exception will
be raised; its args attribute explains why the view access was disallowed.

If secure is False, no permission checking is done.

is_response(ob)
Return True if ob implements the interface implied by View Callable Responses. False if not.

This function is deprecated as of Pyramid 1.1. New code should not use it. Instead, new
code should use the pyramid.request.Request.is_response() method.

class view_config(name=’‘, request_type=None, for_=None, permission=None,
route_name=None, request_method=None, request_param=None, con-
tainment=None, attr=None, renderer=None, wrapper=None, xhr=False,
accept=None, header=None, path_info=None, custom_predicates=(),
context=None, decorator=None, mapper=None, http_cache=None)

A function, class or method decorator which allows a developer to create view registrations nearer
to a view callable definition than use imperative configuration to do the same.

For example, this code in a module views.py:

from resources import MyResource

@view_config(name=’my_view’, context=MyResource, permission=’read’,
route_name=’site1’)

def my_view(context, request):
return ’OK’

Might replace the following call to the pyramid.config.Configurator.add_view()
method:

608

import views
from resources import MyResource
config.add_view(views.my_view, context=MyResource, name=’my_view’,

permission=’read’, ’route_name=’site1’)

The following arguments are supported as arguments to pyramid.view.view_config:
context, permission, name, request_type, route_name, request_method,
request_param, containment, xhr, accept, header, path_info,
custom_predicates, decorator, mapper, and http_cache.

The meanings of these arguments are the same as the arguments passed to
pyramid.config.Configurator.add_view().

See Adding View Configuration Using the @view_config Decorator for details about using
view_config.

class static(root_dir, cache_max_age=3600, package_name=None)
Backwards compatibility alias for pyramid.static.static_view; it overrides that class’
constructor to pass use_subpath=True by default. This class is deprecated as of Pyramid
1.1. Use pyramid.static.static_view instead (probably with a use_subpath=True
argument).

append_slash_notfound_view(context, request)
For behavior like Django’s APPEND_SLASH=True, use this view as the Not Found view in your
application.

When this view is the Not Found view (indicating that no view was found), and any routes have been
defined in the configuration of your application, if the value of the PATH_INFOWSGI environment
variable does not already end in a slash, and if the value of PATH_INFO plus a slash matches any
route’s path, do an HTTP redirect to the slash-appended PATH_INFO. Note that this will lose POST
data information (turning it into a GET), so you shouldn’t rely on this to redirect POST requests.
Note also that static routes are not considered when attempting to find a matching route.

Use the pyramid.config.Configurator.add_view() method to configure this view as
the Not Found view:

from pyramid.httpexceptions import HTTPNotFound
from pyramid.view import append_slash_notfound_view
config.add_view(append_slash_notfound_view, context=HTTPNotFound)

See also Changing the Not Found View.

609

61. PYRAMID.VIEW

class AppendSlashNotFoundViewFactory(notfound_view=None)
There can only be one Not Found view in any Pyramid application. Even if you use
pyramid.view.append_slash_notfound_view() as the Not Found view, Pyramid still
must generate a 404 Not Found response when it cannot redirect to a slash-appended URL; this
not found response will be visible to site users.

If you don’t care what this 404 response looks like, and you only
need redirections to slash-appended route URLs, you may use the
pyramid.view.append_slash_notfound_view() object as the Not Found view.
However, if you wish to use a custom notfound view callable when a URL cannot be redirected
to a slash-appended URL, you may wish to use an instance of this class as the Not Found view,
supplying a view callable to be used as the custom notfound view as the first argument to its
constructor. For instance:

from pyramid.httpexceptions import HTTPNotFound
from pyramid.view import AppendSlashNotFoundViewFactory

def notfound_view(context, request): return HTTPNotFound(’nope’)

custom_append_slash = AppendSlashNotFoundViewFactory(notfound_view)
config.add_view(custom_append_slash, context=HTTPNotFound)

The notfound_view supplied must adhere to the two-argument view callable calling convention
of (context, request) (context will be the exception object).

610

CHAPTER

SIXTYTWO

PYRAMID.WSGI

wsgiapp(wrapped)
Decorator to turn a WSGI application into a Pyramid view callable. This decorator differs
from the pyramid.wsgi.wsgiapp2() decorator inasmuch as fixups of PATH_INFO and
SCRIPT_NAMEwithin the WSGI environment are not performed before the application is invoked.

E.g., the following in a views.py module:

@wsgiapp
def hello_world(environ, start_response):

body = ’Hello world’
start_response(’200 OK’, [(’Content-Type’, ’text/plain’),

(’Content-Length’, len(body))])
return [body]

Allows the following call to pyramid.config.Configurator.add_view():

from views import hello_world
config.add_view(hello_world, name=’hello_world.txt’)

The wsgiapp decorator will convert the result of the WSGI application to a Response and return
it to Pyramid as if the WSGI app were a pyramid view.

wsgiapp2(wrapped)
Decorator to turn a WSGI application into a Pyramid view callable. This decorator differs
from the pyramid.wsgi.wsgiapp() decorator inasmuch as fixups of PATH_INFO and
SCRIPT_NAME within the WSGI environment are performed before the application is invoked.

E.g. the following in a views.py module:

611

62. PYRAMID.WSGI

@wsgiapp2
def hello_world(environ, start_response):

body = ’Hello world’
start_response(’200 OK’, [(’Content-Type’, ’text/plain’),

(’Content-Length’, len(body))])
return [body]

Allows the following call to pyramid.config.Configurator.add_view():

from views import hello_world
config.add_view(hello_world, name=’hello_world.txt’)

The wsgiapp2 decorator will convert the result of the WSGI application to a Response and return
it to Pyramid as if the WSGI app were a Pyramid view. The SCRIPT_NAME and PATH_INFO
values present in the WSGI environment are fixed up before the application is invoked. In partic-
ular, a new WSGI environment is generated, and the subpath of the request passed to wsgiapp2
is used as the new request’s PATH_INFO and everything preceding the subpath is used as the
SCRIPT_NAME. The new environment is passed to the downstream WSGI application.

612

Part IV

Glossary and Index

GLOSSARY

ACE An access control entry. An access control entry is one element in an ACL. An access control entry
is a three-tuple that describes three things: an action (one of either Allow or Deny), a principal (a
string describing a user or group), and a permission. For example the ACE, (Allow, ’bob’,
’read’) is a member of an ACL that indicates that the principal bob is allowed the permission
read against the resource the ACL is attached to.

ACL An access control list. An ACL is a sequence of ACE tuples. An ACL is attached to a resource
instance. An example of an ACL is [(Allow, ’bob’, ’read’), (Deny, ’fred’,
’write’)]. If an ACL is attached to a resource instance, and that resource is findable via the
context resource, it will be consulted any active security policy to determine wither a particular
request can be fulfilled given the authentication information in the request.

Agendaless Consulting A consulting organization formed by Paul Everitt, Tres Seaver, and Chris Mc-
Donough. See also http://agendaless.com .

Akhet Akhet is a Pyramid-based development environment which provides a Pylons-
esque scaffold which sports support for view handler application development,
SQLAlchemy support, Mako templating by default, and other Pylons-like features. See
http://docs.pylonsproject.org/projects/akhet/dev/index.html for more information.

application registry A registry of configuration information consulted by Pyramid while servicing
an application. An application registry maps resource types to views, as well as housing other
application-specific component registrations. Every Pyramid application has one (and only one)
application registry.

asset Any file contained within a Python package which is not a Python source code file.

asset specification A colon-delimited identifier for an asset. The colon separates a Python package name
from a package subpath. For example, the asset specification my.package:static/baz.css
identifies the file named baz.css in the static subdirectory of the my.package Python pack-
age. See Understanding Asset Specifications for more info.

authentication The act of determining that the credentials a user presents during a particular request are
“good”. Authentication in Pyramid is performed via an authentication policy.

authentication policy An authentication policy in Pyramid terms is a bit of code which has an API
which determines the current principal (or principals) associated with a request.

615

http://agendaless.com
http://docs.pylonsproject.org/projects/akhet/dev/index.html

62. GLOSSARY

authorization The act of determining whether a user can perform a specific action. In pyramid terms,
this means determining whether, for a given resource, any principal (or principals) associated with
the request have the requisite permission to allow the request to continue. Authorization in Pyramid
is performed via its authorization policy.

authorization policy An authorization policy in Pyramid terms is a bit of code which has an API which
determines whether or not the principals associated with the request can perform an action associ-
ated with a permission, based on the information found on the context resource.

Babel A collection of tools for internationalizing Python applications. Pyramid does not depend on
Babel to operate, but if Babel is installed, additional locale functionality becomes available to your
application.

Chameleon chameleon is an attribute language template compiler which supports both the ZPT and
Genshi templating specifications. It is written and maintained by Malthe Borch. It has several
extensions, such as the ability to use bracketed (Genshi-style) ${name} syntax, even within ZPT.
It is also much faster than the reference implementations of both ZPT and Genshi. Pyramid offers
Chameleon templating out of the box in ZPT and text flavors.

configuration declaration An individual method call made to an instance of a Pyramid Configura-
tor object which performs an arbitrary action, such as registering a view configuration (via the
add_view() method of the configurator) or route configuration (via the add_route() method
of the configurator). A set of configuration declarations is also implied by the configuration deco-
ration detected by a scan of code in a package.

configuration decoration Metadata implying one or more configuration declaration invocations. Often
set by configuration Python decorator attributes, such as pyramid.view.view_config, aka
@view_config.

configurator An object used to do configuration declaration within an application. The most common
configurator is an instance of the pyramid.config.Configurator class.

context A resource in the resource tree that is found during traversal or URL dispatch based on URL
data; if it’s found via traversal, it’s usually a resource object that is part of a resource tree; if it’s
found via URL dispatch, it’s an object manufactured on behalf of the route’s “factory”. A context
resource becomes the subject of a view, and often has security information attached to it. See the
Traversal chapter and the URL Dispatch chapter for more information about how a URL is resolved
to a context resource.

CPython The C implementation of the Python language. This is the reference implementation that most
people refer to as simply “Python”; Jython, Google’s App Engine, and PyPy are examples of non-C
based Python implementations.

616

http://babel.edgewall.org/
http://chameleon.repoze.org
http://codespeak.net/pypy/dist/pypy/doc/

declarative configuration The configuration mode in which you use the combination of configuration
decoration and a scan to configure your Pyramid application.

decorator A wrapper around a Python function or class which accepts the function or class as its first
argument and which returns an arbitrary object. Pyramid provides several decorators, used for
configuration and return value modification purposes. See also PEP 318.

Default Locale Name The locale name used by an application when no explicit locale name is set. See
Localization-Related Deployment Settings.

default permission A permission which is registered as the default for an entire application. When a
default permission is in effect, every view configuration registered with the system will be effec-
tively amended with a permission argument that will require that the executing user possess the
default permission in order to successfully execute the associated view callable See also Setting a
Default Permission.

Default view The default view of a resource is the view invoked when the view name is the empty string
(”). This is the case when traversal exhausts the path elements in the PATH_INFO of a request
before it returns a context resource.

Deployment settings Deployment settings are settings passed to the Configurator as a settings ar-
gument. These are later accessible via a request.registry.settings dictionary in views
or as config.registry.settings in configuration code. Deployment settings can be used
as global application values.

distribution (Setuptools/distutils terminology). A file representing an installable library or application.
Distributions are usually files that have the suffix of .egg, .tar.gz, or .zip. Distributions are
the target of Setuptools commands such as easy_install.

distutils The standard system for packaging and distributing Python packages. See
http://docs.python.org/distutils/index.html for more information. setuptools is actually an
extension of the Distutils.

Django A full-featured Python web framework.

domain model Persistent data related to your application. For example, data stored in a relational
database. In some applications, the resource tree acts as the domain model.

dotted Python name A reference to a Python object by name using a string, in the form
path.to.modulename:attributename. Often used in Paste and setuptools configurations.
A variant is used in dotted names within configurator method arguments that name objects (such as
the “add_view” method’s “view” and “context” attributes): the colon (:) is not used; in its place is
a dot.

617

http://www.python.org/dev/peps/pep-0318/
http://docs.python.org/distutils/index.html
http://djangoproject.com

62. GLOSSARY

entry point A setuptools indirection, defined within a setuptools distribution setup.py. It is usually a
name which refers to a function somewhere in a package which is held by the distribution.

event An object broadcast to zero or more subscriber callables during normal Pyramid system operations
during the lifetime of an application. Application code can subscribe to these events by using the
subscriber functionality described in Using Events.

exception response A response that is generated as the result of a raised exception being caught by an
exception view.

Exception view An exception view is a view callable which may be invoked by Pyramid when an ex-
ception is raised during request processing. See Custom Exception Views for more information.

finished callback A user-defined callback executed by the router unconditionally at the very end of
request processing . See Using Finished Callbacks.

Forbidden view An exception view invoked by Pyramid when the developer explicitly raises a
pyramid.httpexceptions.HTTPForbidden exception from within view code or root fac-
tory code, or when the view configuration and authorization policy found for a request disallows a
particular view invocation. Pyramid provides a default implementation of a forbidden view; it can
be overridden. See Changing the Forbidden View.

Genshi An XML templating language by Christopher Lenz.

Gettext The GNU gettext library, used by the Pyramid translation machinery.

Google App Engine Google App Engine (aka “GAE”) is a Python application hosting service offered
by Google. Pyramid runs on GAE.

Grok A web framework based on Zope 3.

HTTP Exception The set of exception classes defined in pyramid.httpexceptions. These can
be used to generate responses with various status codes when raised or returned from a view
callable. See also HTTP Exceptions.

imperative configuration The configuration mode in which you use Python to call methods on a Con-
figurator in order to add each configuration declaration required by your application.

interface A Zope interface object. In Pyramid, an interface may be attached to a resource object or a
request object in order to identify that the object is “of a type”. Interfaces are used internally by
Pyramid to perform view lookups and other policy lookups. The ability to make use of an interface
is exposed to an application programmers during view configuration via the context argument,
the request_type argument and the containment argument. Interfaces are also exposed to
application developers when they make use of the event system. Fundamentally, Pyramid program-
mers can think of an interface as something that they can attach to an object that stamps it with a
“type” unrelated to its underlying Python type. Interfaces can also be used to describe the behavior
of an object (its methods and attributes), but unless they choose to, Pyramid programmers do not
need to understand or use this feature of interfaces.

618

http://pypi.python.org/pypi/Genshi/
http://www.gnu.org/software/gettext/
http://code.google.com/appengine/
http://grok.zope.org
http://pypi.python.org/pypi/zope.interface

Internationalization The act of creating software with a user interface that can potentially be displayed
in more than one language or cultural context. Often shortened to “i18n” (because the word “inter-
nationalization” is I, 18 letters, then N). See also: Localization.

Jinja2 A text templating language by Armin Ronacher.

jQuery A popular Javascript library.

JSON JavaScript Object Notation is a data serialization format.

Jython A Python implementation written for the Java Virtual Machine.

lineage An ordered sequence of objects based on a “location -aware” resource. The lineage of any given
resource is composed of itself, its parent, its parent’s parent, and so on. The order of the sequence
is resource-first, then the parent of the resource, then its parent’s parent, and so on. The parent of a
resource in a lineage is available as its __parent__ attribute.

Lingua A package by Wichert Akkerman which provides Babel message extractors for Python source
files and Chameleon ZPT template files.

Locale Name A string like en, en_US, de, or de_AT which uniquely identifies a particular locale.

Locale Negotiator An object supplying a policy determining which locale name best repre-
sents a given request. It is used by the pyramid.i18n.get_locale_name(),
and pyramid.i18n.negotiate_locale_name() functions,
and indirectly by pyramid.i18n.get_localizer(). The
pyramid.i18n.default_locale_negotiator() function is an example of a lo-
cale negotiator.

Localization The process of displaying the user interface of an internationalized application in a partic-
ular language or cultural context. Often shortened to “l10” (because the word “localization” is L,
10 letters, then N). See also: Internationalization.

Localizer An instance of the class pyramid.i18n.Localizer which provides
translation and pluralization services to an application. It is retrieved via the
pyramid.i18n.get_localizer() function.

location The path to an object in a resource tree. See Location-Aware Resources for more information
about how to make a resource object location-aware.

Mako Mako is a template language language which refines the familiar ideas of componentized layout
and inheritance using Python with Python scoping and calling semantics.

619

http://jinja.pocoo.org/2/
http://jquery.org
http://www.json.org/
http://www.jython.org/
http://www.makotemplates.org/

62. GLOSSARY

matchdict The dictionary attached to the request object as request.matchdict when a URL dis-
patch route has been matched. Its keys are names as identified within the route pattern; its values
are the values matched by each pattern name.

Message Catalog A gettext .mo file containing translations.

Message Identifier A string used as a translation lookup key during localization. The msgid argument
to a translation string is a message identifier. Message identifiers are also present in a message
catalog.

METAL Macro Expansion for TAL, a part of ZPT which makes it possible to share common look and
feel between templates.

middleware Middleware is a WSGI concept. It is a WSGI component that acts both as a server and an
application. Interesting uses for middleware exist, such as caching, content-transport encoding, and
other functions. See WSGI.org or PyPI to find middleware for your application.

mod_wsgi mod_wsgi is an Apache module developed by Graham Dumpleton. It allows WSGI applica-
tions (such as applications developed using Pyramid) to be served using the Apache web server.

module A Python source file; a file on the filesystem that typically ends with the extension .py or
.pyc. Modules often live in a package.

multidict An ordered dictionary that can have multiple values for each key. Adds the methods getall,
getone, mixed, add and dict_of_lists to the normal dictionary interface. See Multidict
and pyramid.interfaces.IMultiDict.

Not Found view An exception view invoked by Pyramid when the developer explicitly raises a
pyramid.httpexceptions.HTTPNotFound exception from within view code or root fac-
tory code, or when the current request doesn’t match any view configuration. Pyramid provides a
default implementation of a not found view; it can be overridden. See Changing the Not Found
View.

package A directory on disk which contains an __init__.py file, making it recognizable to Python
as a location which can be import -ed. A package exists to contain module files.

Paste Paste is a WSGI development and deployment system developed by Ian Bicking.

PasteDeploy PasteDeploy is a library used by Pyramid which makes it possible to configure WSGI
components together declaratively within an .ini file. It was developed by Ian Bicking as part of
Paste.

620

http://wiki.zope.org/ZPT/METAL
http://wsgi.org
http://python.org/pypi
http://code.google.com/p/modwsgi/
http://pythonpaste.org
http://pythonpaste.org

permission A string or unicode object that represents an action being taken against a context resource. A
permission is associated with a view name and a resource type by the developer. Resources are dec-
orated with security declarations (e.g. an ACL), which reference these tokens also. Permissions are
used by the active security policy to match the view permission against the resources’s statements
about which permissions are granted to which principal in a context in order to answer the question
“is this user allowed to do this”. Examples of permissions: read, or view_blog_entries.

pipeline The Paste term for a single configuration of a WSGI server, a WSGI application, with a set of
middleware in-between.

pkg_resources A module which ships with setuptools that provides an API for addressing “asset files”
within a Python package. Asset files are static files, template files, etc; basically anything non-
Python-source that lives in a Python package can be considered a asset file. See also PkgResources

predicate A test which returns True or False. Two different types of predicates exist in Pyramid: a
view predicate and a route predicate. View predicates are attached to view configuration and route
predicates are attached to route configuration.

pregenerator A pregenerator is a function associated by a developer with a route. It is
called by route_url() in order to adjust the set of arguments passed to it by the
user for special purposes. It will influence the URL returned by route_url(). See
pyramid.interfaces.IRoutePregenerator for more information.

principal A principal is a string or unicode object representing a userid or a group id. It is provided by
an authentication policy. For example, if a user had the user id “bob”, and Bob was part of two
groups named “group foo” and “group bar”, the request might have information attached to it that
would indicate that Bob was represented by three principals: “bob”, “group foo” and “group bar”.

project (Setuptools/distutils terminology). A directory on disk which contains a setup.py file and
one or more Python packages. The setup.py file contains code that allows the package(s) to be
installed, distributed, and tested.

Pylons A lightweight Python web framework and a predecessor of Pyramid.

PyPI The Python Package Index, a collection of software available for Python.

PyPy PyPy is an “alternative implementation of the Python language”:http://pypy.org/

Pyramid Cookbook An additional documentation resource for Pyramid which presents topical, practi-
cal usages of Pyramid available via http://docs.pylonsproject.org/ .

pyramid_debugtoolbar A Pyramid add on which displays a helpful debug toolbar “on top of”
HTML pages rendered by your application, displaying request, routing, and database in-
formation. pyramid_debugtoolbar is configured into the development.ini
of all applications which use a Pyramid scaffold. For more information, see
https://docs.pylonsproject.org/projects/pyramid_debugtoolbar/dev/ .

621

http://peak.telecommunity.com/DevCenter/PkgResources
http://pylonshq.com
http://pypi.python.org/pypi
http://pypy.org/
http://docs.pylonsproject.org/
https://docs.pylonsproject.org/projects/pyramid_debugtoolbar/dev/

62. GLOSSARY

pyramid_exclog A package which logs Pyramid application exception (error) information to a standard
Python logger. This add-on is most useful when used in production applications, because the logger
can be configured to log to a file, to UNIX syslog, to the Windows Event Log, or even to email. See
its documentation.

pyramid_handlers An add-on package which allows Pyramid users to create classes that are analogues
of Pylons 1 “controllers”. See http://docs.pylonsproject.org/projects/pyramid_handlers/dev/ .

pyramid_jinja2 Jinja2 templating system bindings for Pyramid, documented at
http://docs.pylonsproject.org/projects/pyramid_jinja2/dev/ . This package also includes a
scaffold named pyramid_jinja2_starter, which creates an application package based on
the Jinja2 templating system.

pyramid_zcml An add-on package to Pyramid which allows applications to be configured via ZCML. It
is available on PyPI. If you use pyramid_zcml, you can use ZCML as an alternative to impera-
tive configuration or configuration decoration.

Python The programming language in which Pyramid is written.

renderer A serializer that can be referred to via view configuration which converts a non-Response
return values from a view into a string (and ultimately a response). Using a renderer can make
writing views that require templating or other serialization less tedious. See Writing View Callables
Which Use a Renderer for more information.

renderer factory A factory which creates a renderer. See Adding and Changing Renderers for more
information.

renderer globals Values injected as names into a renderer based on application policy. See Adding
Renderer Globals (Deprecated) for more information.

Repoze “Repoze” is essentially a “brand” of software developed by Agendaless Consulting and a set of
contributors. The term has no special intrinsic meaning. The project’s website has more informa-
tion. The software developed “under the brand” is available in a Subversion repository. Pyramid
was originally known as repoze.bfg.

repoze.catalog An indexing and search facility (fielded and full-text) based on zope.index. See the
documentation for more information.

repoze.lemonade Zope2 CMF-like data structures and helper facilities for CA-and-ZODB-based appli-
cations useful within Pyramid applications.

repoze.who Authentication middleware for WSGI applications. It can be used by Pyramid to provide
authentication information.

622

https://docs.pylonsproject.org/projects/pyramid_exclog/dev/
http://docs.pylonsproject.org/projects/pyramid_handlers/dev/
http://docs.pylonsproject.org/projects/pyramid_jinja2/dev/
http://python.org
http://agendaless.com
http://repoze.org
http://svn.repoze.org
http://pypi.python.org/pypi/zope.index
http://docs.repoze.org/catalog
http://docs.repoze.org/catalog
http://docs.repoze.org/lemonade
http://docs.repoze.org/who

repoze.workflow Barebones workflow for Python apps . It can be used by Pyramid to form a workflow
system.

request An object that represents an HTTP request, usually an instance of the
pyramid.request.Request class. See Request and Response Objects (narrative) and
pyramid.request (API documentation) for information about request objects.

request factory An object which, provided a WSGI environment as a single positional argument, returns
a Pyramid-compatible request.

request type An attribute of a request that allows for specialization of view invocation based on arbi-
trary categorization. The every request object that Pyramid generates and manipulates has one
or more interface objects attached to it. The default interface attached to a request object is
pyramid.interfaces.IRequest.

resource An object representing a node in the resource tree of an application. If traversal is used,
a resource is an element in the resource tree traversed by the system. When traversal is used, a
resource becomes the context of a view. If url dispatch is used, a single resource is generated
for each request and is used as the context resource of a view.

Resource Location The act of locating a context resource given a request. Traversal and URL dispatch
are the resource location subsystems used by Pyramid.

resource tree A nested set of dictionary-like objects, each of which is a resource. The act of traversal
uses the resource tree to find a context resource.

response An object returned by a view callable that represents response data returned to the requesting
user agent. It must implements the pyramid.interfaces.IResponse interface. A response
object is typically an instance of the pyramid.response.Response class or a subclass such
as pyramid.httpexceptions.HTTPFound. See Request and Response Objects for infor-
mation about response objects.

response adapter A callable which accepts an arbitrary object and “converts” it to a
pyramid.response.Response object. See Changing How Pyramid Treats View Responses
for more information.

response callback A user-defined callback executed by the router at a point after a response object is
successfully created. See Using Response Callbacks.

reStructuredText A plain text format that is the defacto standard for descriptive text shipped in distri-
bution files, and Python docstrings. This documentation is authored in ReStructuredText format.

root The object at which traversal begins when Pyramid searches for a context resource (for URL Dis-
patch, the root is always the context resource unless the traverse= argument is used in route
configuration).

623

http://docs.repoze.org/workflow
http://docutils.sourceforge.net/rst.html

62. GLOSSARY

root factory The “root factory” of a Pyramid application is called on every request sent to the appli-
cation. The root factory returns the traversal root of an application. It is conventionally named
get_root. An application may supply a root factory to Pyramid during the construction of a
Configurator. If a root factory is not supplied, the application uses a default root object. Use of
the default root object is useful in application which use URL dispatch for all URL-to-view code
mappings.

route A single pattern matched by the url dispatch subsystem, which generally resolves to a root factory
(and then ultimately a view). See also url dispatch.

route configuration Route configuration is the act of associating request parameters with a particular
route using pattern matching and route predicate statements. See URL Dispatch for more informa-
tion about route configuration.

route predicate An argument to a route configuration which implies a value that evaluates to True or
False for a given request. All predicates attached to a route configuration must evaluate to True
for the associated route to “match” the current request. If a route does not match the current request,
the next route (in definition order) is attempted.

router The WSGI application created when you start a Pyramid application. The router intercepts re-
quests, invokes traversal and/or URL dispatch, calls view functions, and returns responses to the
WSGI server on behalf of your Pyramid application.

Routes A system by Ben Bangert which parses URLs and compares them against a number of user
defined mappings. The URL pattern matching syntax in Pyramid is inspired by the Routes syntax
(which was inspired by Ruby On Rails pattern syntax).

routes mapper An object which compares path information from a request to an ordered set of route
patterns. See URL Dispatch.

scaffold A project template that helps users get started writing a Pyramid application quickly. Scaffolds
are usually used via the paster create command.

scan The term used by Pyramid to define the process of importing and examining all code in a Python
package or module for configuration decoration.

session A namespace that is valid for some period of continual activity that can be used to represent a
user’s interaction with a web application.

session factory A callable, which, when called with a single argument named request (a request
object), returns a session object.

setuptools Setuptools builds on Python’s distutils to provide easier building, distribution, and in-
stallation of libraries and applications.

624

http://routes.groovie.org/
http://peak.telecommunity.com/DevCenter/setuptools

SQLAlchemy SQLAlchemy is an object relational mapper used in tutorials within this documentation.

subpath A list of element “left over” after the router has performed a successful traversal to a view.
The subpath is a sequence of strings, e.g. [’left’, ’over’, ’names’]. Within Pyramid
applications that use URL dispatch rather than traversal, you can use *subpath in the route
pattern to influence the subpath. See Using *subpath in a Route Pattern for more information.

subscriber A callable which receives an event. A callable becomes a subscriber via imperative configu-
ration or via configuration decoration. See Using Events for more information.

template A file with replaceable parts that is capable of representing some text, XML, or HTML when
rendered.

thread local A thread-local variable is one which is essentially a global variable in terms of how it is
accessed and treated, however, each thread used by the application may have a different value for
this same “global” variable. Pyramid uses a small number of thread local variables, as described in
Thread Locals. See also the threading.local documentation for more information.

Translation Directory A translation directory is a gettext translation directory. It contains language
folders, which themselves contain LC_MESSAGES folders, which contain .mo files. Each .mo file
represents a set of translations for a language in a translation domain. The name of the .mo file
(minus the .mo extension) is the translation domain name.

Translation Domain A string representing the “context” in which a translation was made. For ex-
ample the word “java” might be translated differently if the translation domain is “programming-
languages” than would be if the translation domain was “coffee”. A translation domain is represnted
by a collection of .mo files within one or more translation directory directories.

Translation String An instance of pyramid.i18n.TranslationString, which is a class that
behaves like a Unicode string, but has several extra attributes such as domain, msgid, and
mapping for use during translation. Translation strings are usually created by hand within soft-
ware, but are sometimes created on the behalf of the system for automatic template translation. For
more information, see Internationalization and Localization.

Translator A callable which receives a translation string and returns a translated Unicode object for
the purposes of internationalization. A localizer supplies a translator to a Pyramid application
accessible via its translate method.

traversal The act of descending “up” a tree of resource objects from a root resource in order to find a
context resource. The Pyramid router performs traversal of resource objects when a root factory is
specified. See the Traversal chapter for more information. Traversal can be performed instead of
URL dispatch or can be combined with URL dispatch. See Combining Traversal and URL Dispatch
for more information about combining traversal and URL dispatch (advanced).

625

http://www.sqlalchemy.org/
http://en.wikipedia.org/wiki/Thread_(computer_science)
http://docs.python.org/library/threading.html#threading.local

62. GLOSSARY

tween A bit of code that sits between the Pyramid router’s main request handling function and the
upstream WSGI component that uses Pyramid as its ‘app’. The word “tween” is a contraction
of “between”. A tween may be used by Pyramid framework extensions, to provide, for example,
Pyramid-specific view timing support, bookkeeping code that examines exceptions before they are
returned to the upstream WSGI application, or a variety of other features. Tweens behave a bit like
WSGI ‘middleware’ but they have the benefit of running in a context in which they have access
to the Pyramid application registry as well as the Pyramid rendering machinery. See Registering
“Tweens”.

URL dispatch An alternative to traversal as a mechanism for locating a context resource for a view.
When you use a route in your Pyramid application via a route configuration, you are using URL
dispatch. See the URL Dispatch for more information.

Venusian Venusian is a library which allows framework authors to defer decorator actions. Instead of
taking actions when a function (or class) decorator is executed at import time, the action usually
taken by the decorator is deferred until a separate “scan” phase. Pyramid relies on Venusian to
provide a basis for its scan feature.

view Common vernacular for a view callable.

view callable A “view callable” is a callable Python object which is associated with a view configuration;
it returns a response object . A view callable accepts a single argument: request, which will be
an instance of a request object. An alternate calling convention allows a view to be defined as a
callable which accepts a pair of arguments: context and request: this calling convention is
useful for traversal-based applications in which a context is always very important. A view callable
is the primary mechanism by which a developer writes user interface code within Pyramid. See
Views for more information about Pyramid view callables.

view configuration View configuration is the act of associating a view callable with configuration in-
formation. This configuration information helps map a given request to a particular view callable
and it can influence the response of a view callable. Pyramid views can be configured via imper-
ative configuration, or by a special @view_config decorator coupled with a scan. See View
Configuration for more information about view configuration.

View handler A view handler ties together pyramid.config.Configurator.add_route()
and pyramid.config.Configurator.add_view() to make it more convenient to register
a collection of views as a single class when using url dispatch. View handlers ship as part of the
pyramid_handlers add-on package.

View Lookup The act of finding and invoking the “best” view callable given a request and a context
resource.

626

http://docs.repoze.org/venusian

view mapper A view mapper is a class which implements the
pyramid.interfaces.IViewMapperFactory interface, which performs view argu-
ment and return value mapping. This is a plug point for extension builders, not normally used by
“civilians”.

view name The “URL name” of a view, e.g index.html. If a view is configured without a name, its
name is considered to be the empty string (which implies the default view).

view predicate An argument to a view configuration which evaluates to True or False for a given
request. All predicates attached to a view configuration must evaluate to true for the associated
view to be considered as a possible callable for a given request.

virtual root A resource object representing the “virtual” root of a request; this is typically the physical
root object (the object returned by the application root factory) unless Virtual Hosting is in use.

virtualenv An isolated Python environment. Allows you to control which packages are used on a par-
ticular project by cloning your main Python. virtualenv was created by Ian Bicking.

WebOb WebOb is a WSGI request/response library created by Ian Bicking.

WebTest WebTest is a package which can help you write functional tests for your WSGI application.

WSGI Web Server Gateway Interface. This is a Python standard for connecting web applications to web
servers, similar to the concept of Java Servlets. Pyramid requires that your application be served as
a WSGI application.

ZCML Zope Configuration Markup Language, an XML dialect used by Zope and pyramid_zcml for
configuration tasks.

ZEO Zope Enterprise Objects allows multiple simultaneous processes to access a single ZODB database.

ZODB Zope Object Database, a persistent Python object store.

Zope The Z Object Publishing Framework, a full-featured Python web framework.

Zope Component Architecture The Zope Component Architecture (aka ZCA) is a system which al-
lows for application pluggability and complex dispatching based on objects which implement an
interface. Pyramid uses the ZCA “under the hood” to perform view dispatching and other applica-
tion configuration tasks.

ZPT The Zope Page Template templating language.

627

http://pypi.python.org/pypi/virtualenv
http://webob.org
http://pythonpaste.org/webtest/
http://wsgi.org/
http://www.muthukadan.net/docs/zca.html#zcml
http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/ZEO.stx
http://zodb.org
http://zope.org
http://www.muthukadan.net/docs/zca.html
http://wiki.zope.org/ZPT/FrontPage

62. GLOSSARY

628

INDEX

Symbols
*subpath

hybrid applications, 282
*traverse route pattern

hybrid applications, 278
__call__() (IResponse method), 534
__call__() (IRoutePregenerator method), 527
__call__() (ISessionFactory method), 528
__call__() (IViewMapper method), 529
__call__() (IViewMapperFactory method), 529
__contains__() (IDict method), 530
__delitem__() (IDict method), 530
__getitem__() (IDict method), 530
__init__.py, 53
__iter__() (IDict method), 531
__setitem__() (IDict method), 530

A
absolute_asset_spec() (Configurator method), 469
accept (Request attribute), 558
accept_charset (Request attribute), 558
accept_encoding (Request attribute), 558
accept_language (Request attribute), 558
accept_ranges (IResponse attribute), 535
accept_ranges (Response attribute), 577
access control entry, 267
access control list, 266
ACE, 267, 615
ACE (special), 269
ACL, 266, 615

resource, 266

ACL inheritance, 270
ACLAllowed (class in pyramid.security), 588
ACLAuthorizationPolicy (class in pyra-

mid.authorization), 451
ACLDenied (class in pyramid.security), 588
action() (Configurator method), 466
activating

translation, 215
add() (IMultiDict method), 532
add_directive, 314
add_directive() (Configurator method), 469
add_finished_callback() (Request method), 550,

559
add_renderer() (Configurator method), 470
add_response_adapter() (Configurator method),

470
add_response_callback() (Request method), 550,

559
add_route, 59
add_route() (Configurator method), 471
add_settings() (Configurator method), 478
add_static_view, 134
add_static_view() (Configurator method), 476
add_subscriber() (Configurator method), 478
add_translation_dirs() (Configurator method), 479
add_tween() (Configurator method), 486
add_view, 129
add_view() (Configurator method), 479
adding

renderer, 100
translation directory, 215

629

INDEX

adding directives
configurator, 314

adding renderer globals, 288
advanced

configuration, 305
age (IResponse attribute), 536
age (Response attribute), 577
Agendaless Consulting, 3, 615
Akhet, 615
Akkerman, Wichert, ix
ALL_PERMISSIONS (in module pyra-

mid.security), 587
Allow (in module pyramid.security), 588
allow (IResponse attribute), 536
allow (Response attribute), 577
Allowed (class in pyramid.security), 588
app (IApplicationCreated attribute), 523
app_iter (IResponse attribute), 533
app_iter (Response attribute), 577
app_iter_range() (IResponse method), 535
app_iter_range() (Response method), 577
append_slash_notfound_view() (in module pyra-

mid.view), 609
AppendSlashNotFoundViewFactory (class in pyra-

mid.view), 609
application configuration, 26
application registry, 329, 615
application_url (Request attribute), 560
ApplicationCreated (class in pyramid.events), 498
as_string() (Request method), 560
asbool() (in module pyramid.settings), 589
assert_() (DummyTemplateRenderer method), 593
asset, 615
asset specification, 615
asset specifications, 133
assets, 131

generating urls, 136
overriding, 139, 322
serving, 134

Authenticated (in module pyramid.security), 587
authenticated_userid() (IAuthenticationPolicy

method), 525

authenticated_userid() (in module pyra-
mid.security), 585

authentication, 615
authentication policy, 615
authentication policy (creating), 271
authorization, 615
authorization (Request attribute), 560
authorization policy, 263, 616
authorization policy (creating), 272
AuthTktAuthenticationPolicy (class in pyra-

mid.authentication), 453
AuthTktCookieHelper (class in pyra-

mid.authentication), 457
AuthTktCookieHelper.AuthTicket (class in pyra-

mid.authentication), 457
AuthTktCookieHelper.BadTicket, 457
automatic reloading of templates, 117

B
Babel, 205, 211, 616

message extractors, 206
Bangert, Ben, ix
Beaker, 155
Beelby, Chris, ix
before render event, 288
BeforeRender (class in pyramid.events), 499
begin() (Configurator method), 466
bfg2pyramid, 433
Bicking, Ian, ix, 141
blank() (pyramid.request.Request class method),

560
body (IResponse attribute), 535
body (Request attribute), 560
body (Response attribute), 577
body_file (IResponse attribute), 536
body_file (Request attribute), 560
body_file (Response attribute), 577
body_file_raw (Request attribute), 561
body_file_seekable (Request attribute), 561
book audience, vii
book content overview, vii
bootstrap() (in module pyramid.paster), 539
Borch, Malthe, ix

630

INDEX

Brandl, Georg, ix
built-in renderers, 93

C
cache_control (IResponse attribute), 534
cache_control (Request attribute), 561
cache_control (Response attribute), 578
cache_expires (IResponse attribute), 532
call_application() (Request method), 561
Chameleon, 616

translation strings, 212
chameleon

renderer, 95
Chameleon text templates, 113
Chameleon ZPT macros, 112
Chameleon ZPT templates, 111
changed() (ISession method), 528
changing

renderer, 102
charset (IResponse attribute), 533
charset (Request attribute), 561
charset (Response attribute), 578
cleaning up after request, 148
cleanUp() (in module pyramid.testing), 592
clear (BeforeRender attribute), 500
clear() (IDict method), 530
clone() (DummyResource method), 592
code scanning, 28
commit() (Configurator method), 466
compiling

message catalog, 209
conditional_response_app() (IResponse method),

534
conditional_response_app() (Response method),

578
configuration

advanced, 305
conflict detection, 307
including from external sources, 312

configuration declaration, 616
configuration decoration, 28, 616
configuration decorator, 298

ConfigurationError (class in pyramid.exceptions),
503

Configurator, 33
configurator, 616

adding directives, 314
Configurator (class in pyramid.config), 463
Configurator testing API, 226
conflict detection

configuration, 307
container resources, 231
content_disposition (IResponse attribute), 534
content_disposition (Response attribute), 578
content_encoding (IResponse attribute), 534
content_encoding (Response attribute), 578
content_language (IResponse attribute), 533
content_language (Response attribute), 578
content_length (IResponse attribute), 532
content_length (Request attribute), 561
content_length (Response attribute), 578
content_location (IResponse attribute), 533
content_location (Response attribute), 578
content_md5 (IResponse attribute), 534
content_md5 (Response attribute), 578
content_range (IResponse attribute), 534
content_range (Response attribute), 578
content_type (IResponse attribute), 535
content_type (Request attribute), 561
content_type (Response attribute), 578
content_type_params (IResponse attribute), 535
content_type_params (Response attribute), 579
context, 254, 616
context (Request attribute), 547
ContextFound (class in pyramid.events), 498
converting a BFG app, 433
cookies (Request attribute), 562
copy (BeforeRender attribute), 500
copy() (IResponse method), 535
copy() (Request method), 562
copy() (Response method), 579
copy_body() (Request method), 562
copy_get() (Request method), 562
corner cases

hybrid applications, 283

631

INDEX

CPython, 616
created (ISession attribute), 528
creating a project, 38
cross-site request forgery attacks, prevention, 157
current_route_path() (in module pyramid.url), 606
current_route_path() (Request method), 554, 562
current_route_url() (in module pyramid.url), 605
current_route_url() (Request method), 553, 563
custom settings, 326

D
date (IResponse attribute), 535
date (Request attribute), 564
date (Response attribute), 579
date and currency formatting (i18n), 211
de la Guardia, Carlos, ix
debug settings, 163
debug toolbar, 43
debug_all, 163
debug_authorization, 163
debug_notfound, 163
debug_routematch, 163
debugging

route matching, 71
templates, 115
view configuration, 131

debugging authorization failures, 271
debugging not found errors, 130
declarative configuration, 616
decorator, 617
default

permission, 265
Default Locale Name, 617
default permission, 617
Default view, 617
default view, 254
default_locale_name, 163, 213
default_locale_negotiator() (in module pyra-

mid.i18n), 521
delete_cookie() (IResponse method), 534
delete_cookie() (Response method), 579
Denied (class in pyramid.security), 588
Deny (in module pyramid.security), 588

DENY_ALL (in module pyramid.security), 587
deployment

settings, 326
Deployment settings, 617
derive_view() (Configurator method), 487
detecting langauges, 214
development install, 40
dict_of_lists() (IMultiDict method), 532
distribution, 617
distutils, 617
Django, 3, 19, 617
domain

translation, 201
domain model, 617
dotted Python name, 617
DummyRequest (class in pyramid.testing), 593
DummyResource (class in pyramid.testing), 592
DummyTemplateRenderer (class in pyra-

mid.testing), 593
Duncan, Casey, ix

E
effective_principals() (IAuthenticationPolicy

method), 525
effective_principals() (in module pyra-

mid.security), 585
encode_content() (IResponse method), 532
encode_content() (Response method), 579
end() (Configurator method), 466
entry point, 617
environ (IResponse attribute), 536
environ (Response attribute), 579
environment variables, 163
etag (IResponse attribute), 533
etag (Response attribute), 579
event, 159, 618
Everitt, Paul, ix
Everyone (in module pyramid.security), 587
exc_info (Request attribute), 548
exception (Request attribute), 548
exception response, 618
exception responses, 150
Exception view, 618

632

INDEX

exception views, 85
exception_response() (in module pyra-

mid.httpexceptions), 508
expires (IResponse attribute), 535
expires (Response attribute), 579
extend() (IMultiDict method), 531
extending

pshell, 192
extending an existing application, 319
extensible application, 318
extracting

messages, 206

F
factory (IRoute attribute), 526
find_interface() (in module pyramid.traversal), 597
find_resource() (in module pyramid.traversal), 597
find_root() (in module pyramid.traversal), 598
finding by interface or class

resource, 241
finding by path

resource, 237
finding root

resource, 238
finished callback, 290, 618
flash messages, 155
flash(), 156
flash() (ISession method), 527
Forbidden (in module pyramid.exceptions), 503
Forbidden view, 618
forbidden view, 270, 286
forget() (AuthTktCookieHelper method), 457
forget() (IAuthenticationPolicy method), 525
forget() (in module pyramid.security), 585
forms, views, and unicode, 87
framework, 3
frameworks vs. libraries, 3
from_file() (pyramid.request.Request class

method), 564
from_file() (pyramid.response.Response class

method), 579
from_string() (pyramid.request.Request class

method), 564

fromkeys() (BeforeRender static method), 500
Fulton, Jim, ix
functional testing, 221
functional tests, 229

G
generate() (IRoute method), 526
generating

resource url, 234
generating route URLs, 69
generating static asset urls, 136
generating urls

assets, 136
Genshi, 618
get (BeforeRender attribute), 500
GET (Request attribute), 558
get() (IDict method), 530
get_app() (in module pyramid.paster), 539
get_csrf_token() (ISession method), 528
get_current_registry, 326, 331, 334
get_current_registry() (in module pyra-

mid.threadlocal), 595
get_current_request, 326
get_current_request() (in module pyra-

mid.threadlocal), 595
get_locale_name, 211
get_locale_name() (in module pyramid.i18n), 521
get_localizer, 209
get_localizer() (in module pyramid.i18n), 521
get_renderer() (in module pyramid.renderers), 543
get_response() (Request method), 564
get_root() (in module pyramid.scripting), 583
get_settings() (Configurator method), 466
get_settings() (in module pyramid.settings), 589
get_template() (in module pyra-

mid.chameleon_text), 459
get_template() (in module pyra-

mid.chameleon_zpt), 461
getall() (IMultiDict method), 531
getGlobalSiteManager, 334
getone() (IMultiDict method), 532
getSiteManager, 329, 331
Gettext, 618

633

INDEX

gettext, 204
getUtility, 329, 331
global views

hybrid applications, 282
global_registries (in module pyramid.config), 495
Google App Engine, 618
Grok, 618

H
Hardwick, Nat, ix
has_key (BeforeRender attribute), 500
has_key() (IDict method), 531
has_permission() (in module pyramid.security),

586
Hathaway, Shane, ix
headerlist (IResponse attribute), 536
headerlist (Response attribute), 579
headers (IResponse attribute), 533
headers (Request attribute), 564
headers (Response attribute), 580
hello world program, 29
helloworld (imperative), 33
Holth, Daniel, ix
hook_zca (configurator method), 333
hook_zca() (Configurator method), 466
host (Request attribute), 564
host_url (Request attribute), 564
hosting an app under a prefix, 219
HTTP caching, 130
HTTP Exception, 618
HTTP exceptions, 83
http redirect (from a view), 86
http_version (Request attribute), 564
HTTPAccepted (class in pyramid.httpexceptions),

509
HTTPBadGateway (class in pyra-

mid.httpexceptions), 516
HTTPBadRequest (class in pyra-

mid.httpexceptions), 512
HTTPClientError (class in pyra-

mid.httpexceptions), 509
HTTPConflict (class in pyramid.httpexceptions),

514

HTTPCreated (class in pyramid.httpexceptions),
509

HTTPError (class in pyramid.httpexceptions), 509
HTTPException (class in pyramid.httpexceptions),

508
HTTPExpectationFailed (class in pyra-

mid.httpexceptions), 515
HTTPFailedDependency (class in pyra-

mid.httpexceptions), 516
HTTPForbidden (class in pyramid.httpexceptions),

512
HTTPFound (class in pyramid.httpexceptions), 511
HTTPGatewayTimeout (class in pyra-

mid.httpexceptions), 517
HTTPGone (class in pyramid.httpexceptions), 514
HTTPInsufficientStorage (class in pyra-

mid.httpexceptions), 517
HTTPInternalServerError (class in pyra-

mid.httpexceptions), 516
HTTPLengthRequired (class in pyra-

mid.httpexceptions), 514
HTTPLocked (class in pyramid.httpexceptions),

516
HTTPMethodNotAllowed (class in pyra-

mid.httpexceptions), 513
HTTPMovedPermanently (class in pyra-

mid.httpexceptions), 511
HTTPMultipleChoices (class in pyra-

mid.httpexceptions), 510
HTTPNoContent (class in pyra-

mid.httpexceptions), 510
HTTPNonAuthoritativeInformation (class in pyra-

mid.httpexceptions), 510
HTTPNotAcceptable (class in pyra-

mid.httpexceptions), 513
HTTPNotFound (class in pyramid.httpexceptions),

513
HTTPNotImplemented (class in pyra-

mid.httpexceptions), 516
HTTPNotModified (class in pyra-

mid.httpexceptions), 511
HTTPOk (class in pyramid.httpexceptions), 509

634

INDEX

HTTPPartialContent (class in pyra-
mid.httpexceptions), 510

HTTPPaymentRequired (class in pyra-
mid.httpexceptions), 512

HTTPPreconditionFailed (class in pyra-
mid.httpexceptions), 514

HTTPProxyAuthenticationRequired (class in pyra-
mid.httpexceptions), 514

HTTPRedirection (class in pyra-
mid.httpexceptions), 509

HTTPRequestEntityTooLarge (class in pyra-
mid.httpexceptions), 515

HTTPRequestRangeNotSatisfiable (class in pyra-
mid.httpexceptions), 515

HTTPRequestTimeout (class in pyra-
mid.httpexceptions), 514

HTTPRequestURITooLong (class in pyra-
mid.httpexceptions), 515

HTTPResetContent (class in pyra-
mid.httpexceptions), 510

HTTPSeeOther (class in pyramid.httpexceptions),
511

HTTPServerError (class in pyra-
mid.httpexceptions), 509

HTTPServiceUnavailable (class in pyra-
mid.httpexceptions), 517

HTTPTemporaryRedirect (class in pyra-
mid.httpexceptions), 512

HTTPUnauthorized (class in pyra-
mid.httpexceptions), 512

HTTPUnprocessableEntity (class in pyra-
mid.httpexceptions), 516

HTTPUnsupportedMediaType (class in pyra-
mid.httpexceptions), 515

HTTPUseProxy (class in pyramid.httpexceptions),
511

HTTPVersionNotSupported (class in pyra-
mid.httpexceptions), 517

hybrid applications, 276
*subpath, 282
*traverse route pattern, 278
corner cases, 283
global views, 282

I
i18n, 200
IApplicationCreated (interface in pyra-

mid.interfaces), 523
IAuthenticationPolicy (interface in pyra-

mid.interfaces), 525
IAuthorizationPolicy (interface in pyra-

mid.interfaces), 525
IBeforeRender (interface in pyramid.interfaces),

524
IContextFound (interface in pyramid.interfaces),

523
identify() (AuthTktCookieHelper method), 458
IDict (interface in pyramid.interfaces), 530
IExceptionResponse (interface in pyra-

mid.interfaces), 526
if_match (Request attribute), 564
if_modified_since (Request attribute), 564
if_none_match (Request attribute), 564
if_range (Request attribute), 564
if_unmodified_since (Request attribute), 565
imperative configuration, 27, 33, 618
implementation() (ITemplateRenderer method),

529
IMultiDict (interface in pyramid.interfaces), 531
include() (Configurator method), 467
including from external sources

configuration, 312
INewRequest, 159
INewRequest (interface in pyramid.interfaces), 523
INewResponse, 159
INewResponse (interface in pyramid.interfaces),

524
ini file, 46
ini file settings, 163
initializing

message catalog, 208
inside() (in module pyramid.location), 537
install

Python (from package, UNIX), 21
Python (from package, Windows), 22
Python (from source, UNIX), 22
virtualenv, 24

635

INDEX

install preparation, 21
installing on Google App Engine, 26
installing on Jython, 26
installing on UNIX, 23
installing on Windows, 25
integration testing, 221
integration tests, 228
interactive shell, 191
interface, 618
Internationalization, 618
internationalization, 200
internationalization (of templates), 116
invalidate() (ISession method), 527
IPython, 191, 194
IRendererInfo (interface in pyramid.interfaces),

529
IResponse, 294
IResponse (interface in pyramid.interfaces), 532
IRoute (interface in pyramid.interfaces), 526
IRoutePregenerator (interface in pyra-

mid.interfaces), 527
is_body_readable (Request attribute), 565
is_body_seekable (Request attribute), 565
is_response() (in module pyramid.view), 608
is_response() (Request method), 565
is_xhr (Request attribute), 565
ISession (interface in pyramid.interfaces), 527
ISessionFactory (interface in pyramid.interfaces),

528
ITemplateRenderer (interface in pyra-

mid.interfaces), 529
items (BeforeRender attribute), 500
items() (DummyResource method), 592
items() (IDict method), 530
iteritems (BeforeRender attribute), 500
iteritems() (IDict method), 531
iterkeys (BeforeRender attribute), 500
iterkeys() (IDict method), 531
itervalues (BeforeRender attribute), 501
itervalues() (IDict method), 531
IViewMapper (interface in pyramid.interfaces), 529
IViewMapperFactory (interface in pyra-

mid.interfaces), 529

J
Jinja2, 118, 619
jQuery, 619
JSON, 619

renderer, 93
json_body

request, 146
json_body (Request attribute), 558
JSONP

renderer, 94
JSONP (class in pyramid.renderers), 544
Jython, 619

K
keys (BeforeRender attribute), 501
keys() (DummyResource method), 592
keys() (IDict method), 530
Koym, Todd, ix

L
l10n, 200
Laflamme, Blaise, ix
Laflamme, Hugues, ix
last_modified (IResponse attribute), 535
last_modified (Response attribute), 580
leaf resources, 231
lineage, 619

resource, 237
lineage() (in module pyramid.location), 537
Lingua, 205, 206, 619
locale

negotiator, 215
setting, 215

Locale Name, 619
locale name, 211
Locale Negotiator, 619
locale negotiator, 216
locale_name (Localizer attribute), 520
Localization, 619
localization, 200
localization deployment settings, 213
Localizer, 619
localizer, 209

636

INDEX

Localizer (class in pyramid.i18n), 520
location, 619
location (IResponse attribute), 534
location (Response attribute), 580
location-aware

resource, 232
security, 270

M
make_body_seekable() (Request method), 565
make_localizer() (in module pyramid.i18n), 522
make_tempfile() (Request method), 565
make_wsgi_app, 34
make_wsgi_app() (Configurator method), 488
Mako, 116, 619
mako

renderer, 97
Mako environment settings, 163
Mako i18n, 213
Mako template (sample), 117
MANIFEST.in, 49
mapping to view callable

resource, 119
URL pattern, 119

match() (IRoute method), 526
matchdict, 65, 619
matchdict (Request attribute), 549
matched_route, 66
matched_route (Request attribute), 550
matching

root URL, 69
matching the root URL, 69
matching views

printing, 189
max_forwards (Request attribute), 565
maybe_dotted() (Configurator method), 469
md5_etag() (IResponse method), 535
md5_etag() (Response method), 580
merge_cookies() (IResponse method), 536
merge_cookies() (Response method), 580
Merickel, Michael, ix
Message Catalog, 620
message catalog

compiling, 209
initializing, 208
updating, 208

Message Identifier, 620
message identifier, 201
messages

extracting, 206
METAL, 620
method (Request attribute), 565
middleware, 620
mixed() (IMultiDict method), 532
mod_wsgi, 620
model_url() (Request method), 566
modifying

package structure, 56
module, 620
Moroz, Tom, ix
msgid

translation, 201
multidict, 620
multidict (WebOb), 146
MVC, 19

N
name (IRendererInfo attribute), 529
name (IRoute attribute), 526
negotiate_locale_name, 211
negotiate_locale_name() (in module pyra-

mid.i18n), 521
negotiator

locale, 215
new (ISession attribute), 528
new_csrf_token() (ISession method), 528
NewRequest, 159
NewRequest (class in pyramid.events), 498
NewResponse, 159
NewResponse (class in pyramid.events), 499
NO_PERMISSION_REQUIRED (in module pyra-

mid.security), 587
not found error (debugging), 130
Not Found view, 620
not found view, 285
NotFound (in module pyramid.exceptions), 503

637

INDEX

null_renderer (in module pyramid.renderers), 545

O
object tree, 231, 252
Oram, Simon, ix
Orr, Mike, ix
override_asset, 140
override_asset() (Configurator method), 488
overriding

assets, 139, 322
resource URL generation, 235
routes, 321
views, 321

overriding at runtime
renderer, 103

P
package, 52, 620
package (IRendererInfo attribute), 529
package structure

modifying, 56
Paez, Patricio, ix
par: settings

adding custom, 175
params (Request attribute), 567
parse_ticket() (AuthTktCookieHelper static

method), 458
Paste, 620
PasteDeploy, 46, 620
PasteDeploy settings, 163
paster proutes, 194
paster pshell, 191
paster ptweens, 194
paster pviews, 189
paster serve, 41
path (Request attribute), 568
path_info (Request attribute), 568
path_info_peek() (Request method), 568
path_info_pop() (Request method), 568
path_qs (Request attribute), 568
path_url (Request attribute), 568
pattern (IRoute attribute), 526
peek_flash(), 157

peek_flash() (ISession method), 528
permission, 620

default, 265
permission names, 269
permissions, 264
permits() (IAuthorizationPolicy method), 525
Peters, Tim, ix
pipeline, 621
pkg_resources, 621
pluralization, 209
pluralize() (Localizer method), 520
pluralizing (i18n), 210
pop (BeforeRender attribute), 501
pop() (IDict method), 530
pop_flash(), 157
pop_flash() (ISession method), 528
popitem (BeforeRender attribute), 501
popitem() (IDict method), 531
POST (Request attribute), 558
postvars (Request attribute), 568
pragma (IResponse attribute), 533
pragma (Request attribute), 568
pragma (Response attribute), 580
predicate, 621
predicates (IRoute attribute), 526
pregenerator, 621
pregenerator (IRoute attribute), 526
prepare() (IExceptionResponse method), 526
prepare() (in module pyramid.scripting), 583
prevent_http_cache, 163
preventing cross-site request forgery attacks, 157
principal, 269, 621
principal names, 269
principals_allowed_by_permission() (IAuthoriza-

tionPolicy method), 525
principals_allowed_by_permission() (in module

pyramid.security), 586
printing

matching views, 189
routes, 194
tweens, 194

production.ini, 48
project, 38, 621

638

INDEX

project structure, 45
protecting views, 264
proutes, 194
pshell, 191

extending, 192
ptweens, 194
Pylons, 3, 19, 621
Pylons Project, 19
Pylons-style controller dispatch, 90
PyPI, 621
PyPy, 621
pyramid and other frameworks, 19
Pyramid Cookbook, 621
pyramid genesis, viii
pyramid.authentication (module), 453
pyramid.authorization (module), 451
pyramid.chameleon_text (module), 459
pyramid.chameleon_zpt (module), 461
pyramid.config (module), 463
pyramid.events (module), 497
pyramid.exceptions (module), 503
pyramid.httpexceptions (module), 505
pyramid.i18n (module), 519
pyramid.interfaces (module), 523
pyramid.location (module), 537
pyramid.paster (module), 539
pyramid.registry (module), 541
pyramid.renderers (module), 543
pyramid.request (module), 547
pyramid.response (module), 577
pyramid.scripting (module), 583
pyramid.security (module), 585
pyramid.settings (module), 589
pyramid.testing, 226
pyramid.testing (module), 591
pyramid.threadlocal (module), 595
pyramid.traversal (module), 597
pyramid.url (module), 605
pyramid.view (module), 607
pyramid.wsgi (module), 611
pyramid_alchemy scaffold, 37
pyramid_beaker, 155
pyramid_debugtoolbar, 621

pyramid_exclog, 621
pyramid_handlers, 622
pyramid_jinja2, 622
pyramid_routesalchemy scaffold, 37
pyramid_starter scaffold, 37
pyramid_zcml, 622
pyramid_zodb scaffold, 37
Python, 622

virtual environment, 24
Python (from package, UNIX)

install, 21
Python (from package, Windows)

install, 22
Python (from source, UNIX)

install, 22

Q
query_string (Request attribute), 568
queryvars (Request attribute), 568
quote_path_segment() (in module pyra-

mid.traversal), 600

R
range (Request attribute), 568
redirecting to slash-appended routes, 70
referer (Request attribute), 568
referrer (Request attribute), 568
Registry (class in pyramid.registry), 541
registry (Configurator attribute), 466
registry (IRendererInfo attribute), 529
registry (Request attribute), 547
relative_url() (Request method), 569
reload, 41, 163
reload settings, 163
reload_all, 163
reload_assets, 163, 174
reload_templates, 174
remember() (AuthTktCookieHelper method), 458
remember() (IAuthenticationPolicy method), 525
remember() (in module pyramid.security), 586
remote_addr (Request attribute), 569
remote_user (Request attribute), 569

639

INDEX

RemoteUserAuthenticationPolicy (class in pyra-
mid.authentication), 455

remove_conditional_headers() (Request method),
569

render() (in module pyramid.renderers), 543
render_template() (in module pyra-

mid.chameleon_text), 459
render_template() (in module pyra-

mid.chameleon_zpt), 461
render_template_to_response() (in module pyra-

mid.chameleon_text), 459
render_template_to_response() (in module pyra-

mid.chameleon_zpt), 461
render_to_response() (in module pyra-

mid.renderers), 544
render_view() (in module pyramid.view), 608
render_view_to_iterable() (in module pyra-

mid.view), 607
render_view_to_response() (in module pyra-

mid.view), 607
renderer, 91, 622

adding, 100
chameleon, 95
changing, 102
JSON, 93
JSONP, 94
mako, 97
overriding at runtime, 103
string, 93
system values, 109
templates, 109

renderer (template), 109
renderer factory, 622
renderer globals, 622
renderer response headers, 98
renderers (built-in), 93
rendering_val (IBeforeRender attribute), 524
Repoze, 622
repoze.bfg genesis, viii
repoze.catalog, 622
repoze.lemonade, 622
repoze.who, 622
repoze.workflow, 622

repoze.zope2, viii
RepozeWho1AuthenticationPolicy (class in pyra-

mid.authentication), 455
request, 623

json_body, 146
request (and unicode), 146
Request (class in pyramid.request), 547
request (IContextFound attribute), 524
request (INewRequest attribute), 523
request (INewResponse attribute), 524
request (IResponse attribute), 536
request (Response attribute), 580
request attributes, 143
request attributes (special), 144
request factory, 287, 623
request methods, 145
request object, 143
request type, 623
request URLs, 145
request.registry, 332
RequestClass (IResponse attribute), 535
RequestClass (Response attribute), 577
resource, 245, 623

ACL, 266
finding by interface or class, 241
finding by path, 237
finding root, 238
lineage, 237
location-aware, 232
mapping to view callable, 119

resource API functions, 242
resource interfaces, 239, 260
Resource Location, 623
resource path generation, 236
resource tree, 231, 252, 623
resource url

generating, 234
resource URL generation

overriding, 235
resource_path() (in module pyramid.traversal), 598
resource_path_tuple() (in module pyra-

mid.traversal), 599
resource_url, 234

640

INDEX

resource_url() (in module pyramid.url), 605
resource_url() (Request method), 556, 569
resources.py, 54
response, 82, 623
Response (class in pyramid.response), 577
response (creating), 150
response (INewResponse attribute), 524
response (Request attribute), 548, 571
response adapter, 623
response callback, 289, 623
response headers, 150
response headers (from a renderer), 98
response object, 149
response_adapter() (in module pyramid.response),

581
reStructuredText, 623
retry_after (IResponse attribute), 533
retry_after (Response attribute), 580
root, 623
root (Request attribute), 547
root factory, 254, 623
root URL

matching, 69
root url (matching), 69
Rossi, Chris, ix
route, 624

view callable lookup details, 78
route configuration, 59, 624
route configuration arguments, 64
route factory, 76
route matching, 65

debugging, 71
route ordering, 64
route path pattern syntax, 60
route predicate, 624
route predicates (custom), 74
route subpath, 282
route URLs, 69
route_path() (in module pyramid.url), 605
route_path() (Request method), 553, 571
route_url() (in module pyramid.url), 605
route_url() (Request method), 551, 572
router, 624

Routes, 624
routes

overriding, 321
printing, 194

routes mapper, 624
running an application, 41
running tests, 40

S
Sawyers, Andrew, ix
scaffold, 624
scaffolds, 37
scan, 624
scan() (Configurator method), 489
scheme (Request attribute), 574
script_name (Request attribute), 574
Seaver, Tres, ix
security, 262

location-aware, 270
URL dispatch, 77
view, 129

server (IResponse attribute), 533
server (Response attribute), 580
server_name (Request attribute), 574
server_port (Request attribute), 574
serving

assets, 134
session, 151, 624
session (Request attribute), 549, 574
session factory, 624
session factory (alternates), 155
session factory (custom), 155
session factory (default), 153
session object, 154
session.flash, 156
session.get_csrf_token, 158
session.new_csrf_token, 158
session.peek_flash, 157
session.pop_flash, 156
SessionAuthenticationPolicy (class in pyra-

mid.authentication), 456
set_authentication_policy() (Configurator method),

492

641

INDEX

set_authorization_policy() (Configurator method),
492

set_cookie() (IResponse method), 532
set_cookie() (Response method), 580
set_default_permission() (Configurator method),

490
set_forbidden_view() (Configurator method), 493
set_locale_negotiator() (Configurator method), 489
set_notfound_view() (Configurator method), 494
set_renderer_globals_factory() (Configurator

method), 495
set_request_factory() (Configurator method), 491
set_root_factory() (Configurator method), 491
set_session_factory() (Configurator method), 490
set_view_mapper() (Configurator method), 491
setdefault (BeforeRender attribute), 501
setdefault() (IDict method), 530
setting

locale, 215
settings, 163

deployment, 326
settings (IRendererInfo attribute), 529
settings (Registry attribute), 541
setUp() (in module pyramid.testing), 591
setup.cfg, 51
setup.py, 49
setup.py develop, 40
setup_registry() (Configurator method), 470
setuptools, 624
Shipman, John, ix
special ACE, 269
special permission names, 269
special view responses, 294
SQLAlchemy, 624
startup, 41
startup process, 323
static (class in pyramid.view), 609
static asset urls, 136
static assets view, 137
static asssets, 131
static directory, 55
static routes, 69
static_path() (in module pyramid.url), 606

static_path() (Request method), 555, 574
static_url() (in module pyramid.url), 606
static_url() (Request method), 555, 574
status (IResponse attribute), 532
status (Response attribute), 580
status_code (Response attribute), 580
status_int (IResponse attribute), 534
status_int (Response attribute), 581
status_map (in module pyramid.httpexceptions),

508
str_cookies (Request attribute), 575
str_GET (Request attribute), 575
str_params (Request attribute), 575
str_POST (Request attribute), 575
str_postvars (Request attribute), 575
str_queryvars (Request attribute), 575
string

renderer, 93
subpath, 254, 625
subpath (Request attribute), 547
subpath (route), 282
subscriber, 159, 625
subscriber() (in module pyramid.events), 497
system values

renderer, 109

T
tearDown() (in module pyramid.testing), 592
template, 625
template automatic reload, 117
template internationalization, 116
template renderer side effects, 114
template renderers, 109
template system bindings, 118
templates

debugging, 115
renderer, 109

templates used as renderers, 109
templates used directly, 105
test setup, 224
test tear down, 224
testing_add_renderer() (Configurator method), 493
testing_add_subscriber() (Configurator method),

493

642

INDEX

testing_resources() (Configurator method), 493
testing_securitypolicy() (Configurator method),

492
tests (running), 40
tests.py, 55
text (Response attribute), 581
thread local, 625
thread locals, 326
tmpl_context (Request attribute), 549, 576
translate() (Localizer method), 520
translating (i18n), 209
translation, 209

activating, 215
domain, 201
msgid, 201

translation directories, 204
Translation Directory, 625
translation directory, 215

adding, 215
Translation Domain, 625
translation domains, 207
Translation String, 625
translation string, 201
translation string factory, 203
translation strings

Chameleon, 212
TranslationString (class in pyramid.i18n), 519
TranslationStringFactory (class in pyramid.i18n),

520
Translator, 625
traversal, 245, 625
traversal algorithm, 254
traversal details, 251
traversal examples, 257
traversal tree, 231, 252
traversal_path() (in module pyramid.traversal), 602
traverse() (in module pyramid.traversal), 601
traversed (Request attribute), 548
traverser, 291
tween, 625
tweens

printing, 194
type (IRendererInfo attribute), 529

U
ubody (Response attribute), 581
unauthenticated_userid() (IAuthenticationPolicy

method), 525
unauthenticated_userid() (in module pyra-

mid.security), 585
unhook_zca() (Configurator method), 466
unicode (and the request), 146
unicode, views, and forms, 87
unicode_body (IResponse attribute), 534
unicode_body (Response attribute), 581
unit testing, 221
unittest, 224
unset_cookie() (IResponse method), 533
unset_cookie() (Response method), 581
upath_info (Request attribute), 576
update() (BeforeRender method), 500
update() (IDict method), 531
updating

message catalog, 208
url (Request attribute), 576
URL dispatch, 58, 243, 626

security, 77
url generation (traversal), 242
url generator, 293
URL pattern

mapping to view callable, 119
urlargs (Request attribute), 576
URLDecodeError (class in pyramid.exceptions),

503
urlencode() (in module pyramid.url), 606
urlvars (Request attribute), 576
uscript_name (Request attribute), 576
user_agent (Request attribute), 576

V
values (BeforeRender attribute), 501
values() (DummyResource method), 592
values() (IDict method), 531
van Rossum, Guido, ix
vary (IResponse attribute), 532
vary (Response attribute), 581
Venusian, 626

643

INDEX

view, 626
security, 129

view callable, 626
view callable lookup details

route, 78
view callables, 81
view calling convention, 81, 82, 89
view class, 82
view configuration, 626

debugging, 131
view configuration parameters, 119
view exceptions, 83
view function, 81
View handler, 626
view http redirect, 86
View Lookup, 626
view lookup, 119, 246, 254
view mapper, 296, 626
view name, 254, 627
view predicate, 627
view renderer, 91
view response, 82
view security, 129
view_config, 28
view_config (class in pyramid.view), 608
view_config decorator, 125
view_config placement, 127
view_execution_permitted() (in module pyra-

mid.security), 587
view_name (Request attribute), 548
views

overriding, 321
views, forms, and unicode, 87
views.py, 54
virtual environment

Python, 24
virtual hosting, 218
virtual root, 220, 627
virtual_root (Request attribute), 548
virtual_root() (in module pyramid.traversal), 600
virtual_root_path (Request attribute), 548
virtualenv, 24, 627

install, 24

W
WebOb, 141, 627
WebTest, 627
with_package() (Configurator method), 469
WSGI, 42, 627
WSGI application, 34
wsgiapp() (in module pyramid.wsgi), 611
wsgiapp2() (in module pyramid.wsgi), 611
www_authenticate (IResponse attribute), 533
www_authenticate (Response attribute), 581

Z
ZCA, 329
ZCA global API, 331
ZCA global registry, 334
ZCML, 627
ZEO, 627
ZODB, 627
Zope, 3, 19, 627
Zope 2, viii
Zope 3, viii
Zope Component Architecture, 329, 627
zope.component, 329
ZPT, 627
ZPT macros, 112
ZPT template (sample), 112
ZPT templates (Chameleon), 111

644

	Front Matter
	Copyright, Trademarks, and Attributions
	Attributions
	Print Production
	Contacting The Publisher
	HTML Version and Source Code

	Typographical Conventions
	Author Introduction
	Audience
	Book Content
	The Genesis of repoze.bfg
	The Genesis of Pyramid
	Thanks

	I Narrative Documentation
	Pyramid Introduction
	What Makes Pyramid Unique
	Single-file applications
	Decorator-based configuration
	URL generation
	Static file serving
	Debug Toolbar
	Debugging settings
	Add-ons
	Class-based and function-based views
	Asset specifications
	Extensible templating
	Rendered views can return dictionaries
	Event system
	Built-in internationalization
	HTTP caching
	Sessions
	Speed
	Exception views
	No singletons
	View predicates and many views per route
	Transaction management
	Configuration conflict detection
	Configuration extensibility
	Flexible authentication and authorization
	Traversal
	Tweens
	View response adapters
	``Global'' response object
	Automating repetitive configuration
	Testing
	Support
	Documentation

	What Is The Pylons Project?
	Pyramid and Other Web Frameworks

	Installing Pyramid
	Before You Install
	If You Don't Yet Have A Python Interpreter (UNIX)
	If You Don't Yet Have A Python Interpreter (Windows)

	Installing Pyramid on a UNIX System
	Installing the virtualenv Package
	Creating the Virtual Python Environment
	Installing Pyramid Into the Virtual Python Environment

	Installing Pyramid on a Windows System
	Installing Pyramid on Google App Engine
	Installing Pyramid on Jython
	What Gets Installed

	Application Configuration
	Imperative Configuration
	Declarative Configuration
	Summary

	Creating Your First Pyramid Application
	Hello World
	Imports
	View Callable Declarations
	Application Configuration
	Configurator Construction
	Adding Configuration
	WSGI Application Creation
	WSGI Application Serving
	Conclusion

	References

	Creating a Pyramid Project
	Scaffolds Included with Pyramid
	Creating the Project
	Installing your Newly Created Project for Development
	Running The Tests For Your Application
	Running The Project Application
	Viewing the Application
	The Debug Toolbar

	The Project Structure
	The MyProject Project
	development.ini
	production.ini
	MANIFEST.in
	setup.py
	setup.cfg

	The myproject Package
	__init__.py
	views.py
	resources.py
	static
	templates/mytemplate.pt
	tests.py

	Modifying Package Structure
	Using the Interactive Shell
	Using an Alternate WSGI Server

	URL Dispatch
	High-Level Operational Overview
	Route Configuration
	Configuring a Route to Match a View
	Route Pattern Syntax
	Route Declaration Ordering
	Route Configuration Arguments

	Route Matching
	The Matchdict
	The Matched Route

	Routing Examples
	Example 1
	Example 2
	Example 3

	Matching the Root URL
	Generating Route URLs
	Static Routes
	Redirecting to Slash-Appended Routes
	Custom Not Found View With Slash Appended Routes

	Debugging Route Matching
	Using a Route Prefix to Compose Applications
	Custom Route Predicates
	Route Factories
	Using Pyramid Security With URL Dispatch
	Route View Callable Registration and Lookup Details
	References

	Views
	View Callables
	Defining a View Callable as a Function
	Defining a View Callable as a Class
	View Callable Responses
	Using Special Exceptions In View Callables
	HTTP Exceptions
	How Pyramid Uses HTTP Exceptions

	Custom Exception Views
	Using a View Callable to Do an HTTP Redirect
	Handling Form Submissions in View Callables (Unicode and Character Set Issues)
	Alternate View Callable Argument/Calling Conventions
	Pylons-1.0-Style ``Controller'' Dispatch

	Renderers
	Writing View Callables Which Use a Renderer
	Built-In Renderers
	string: String Renderer
	json: JSON Renderer

	JSONP Renderer
	*.pt or *.txt: Chameleon Template Renderers
	*.mak or *.mako: Mako Template Renderer

	Varying Attributes of Rendered Responses
	Deprecated Mechanism to Vary Attributes of Rendered Responses
	Adding and Changing Renderers
	Adding a New Renderer
	Changing an Existing Renderer

	Overriding A Renderer At Runtime

	Templates
	Using Templates Directly
	System Values Used During Rendering
	Templates Used as Renderers via Configuration
	Chameleon ZPT Templates
	A Sample ZPT Template
	Using ZPT Macros in Pyramid

	Templating with Chameleon Text Templates
	Side Effects of Rendering a Chameleon Template
	Nicer Exceptions in Chameleon Templates
	Chameleon Template Internationalization
	Templating With Mako Templates
	A Sample Mako Template

	Automatically Reloading Templates
	Available Add-On Template System Bindings

	View Configuration
	Mapping a Resource or URL Pattern to a View Callable
	View Configuration Parameters
	Adding View Configuration Using the @view_config Decorator
	Adding View Configuration Using add_view()
	Configuring View Security
	NotFound Errors

	Influencing HTTP Caching
	Debugging View Configuration

	Static Assets
	Understanding Asset Specifications
	Serving Static Assets
	Generating Static Asset URLs

	Advanced: Serving Static Assets Using a View Callable
	Root-Relative Custom Static View (URL Dispatch Only)
	Registering A View Callable to Serve a ``Static'' Asset

	Overriding Assets
	The override_asset API

	Request and Response Objects
	Request
	Special Attributes Added to the Request by Pyramid
	URLs
	Methods
	Unicode
	Multidict
	Dealing With A JSON-Encoded Request Body
	Cleaning Up After a Request
	More Details

	Response
	Headers
	Instantiating the Response
	Exception Responses
	More Details

	Sessions
	Using The Default Session Factory
	Using a Session Object
	Using Alternate Session Factories
	Creating Your Own Session Factory
	Flash Messages
	Using the session.flash Method
	Using the session.pop_flash Method
	Using the session.peek_flash Method

	Preventing Cross-Site Request Forgery Attacks
	Using the session.get_csrf_token Method
	Using the session.new_csrf_token Method

	Using Events
	Configuring an Event Listener Imperatively
	Configuring an Event Listener Using a Decorator
	An Example

	Environment Variables and .ini File Settings
	Reloading Templates
	Reloading Assets
	Debugging Authorization
	Debugging Not Found Errors
	Debugging Route Matching
	Preventing HTTP Caching
	Debugging All
	Reloading All
	Default Locale Name
	Including Packages
	pyramid.includes vs. pyramid.config.Configurator.include()

	Explicit Tween Configuration
	Paste Configuration vs. Plain-Python Configuration

	Mako Template Render Settings
	Mako Directories
	Mako Module Directory
	Mako Input Encoding
	Mako Error Handler
	Mako Default Filters
	Mako Import
	Mako Strict Undefined
	Mako Preprocessor

	Examples
	Understanding the Distinction Between reload_templates and reload_assets
	Adding A Custom Setting

	Logging
	Logging Configuration
	Sending Logging Messages
	Filtering log messages
	Advanced Configuration
	Logging Exceptions
	Request Logging with Paste's TransLogger

	Paste
	PasteDeploy
	Entry Points and PasteDeploy .ini Files
	[DEFAULTS] Section of a PasteDeploy .ini File

	Command-Line Pyramid
	Displaying Matching Views for a Given URL
	The Interactive Shell
	Extending the Shell
	IPython

	Displaying All Application Routes
	Displaying ``Tweens''
	Writing a Script
	Changing the Request
	Cleanup
	Setting Up Logging

	Internationalization and Localization
	Creating a Translation String
	Using The TranslationString Class
	Using the TranslationStringFactory Class

	Working With gettext Translation Files
	Installing Babel and Lingua
	Extracting Messages from Code and Templates
	Initializing a Message Catalog File
	Updating a Catalog File
	Compiling a Message Catalog File

	Using a Localizer
	Performing a Translation
	Performing a Pluralization

	Obtaining the Locale Name for a Request
	Performing Date Formatting and Currency Formatting
	Chameleon Template Support for Translation Strings
	Mako Pyramid I18N Support
	Localization-Related Deployment Settings
	``Detecting'' Available Languages
	Activating Translation
	Adding a Translation Directory
	Setting the Locale

	Locale Negotiators
	The Default Locale Negotiator
	Using a Custom Locale Negotiator

	Virtual Hosting
	Hosting an Application Under a URL Prefix
	Virtual Root Support
	Further Documentation and Examples

	Unit, Integration, and Functional Testing
	Test Set Up and Tear Down
	What?

	Using the Configurator and pyramid.testing APIs in Unit Tests
	Creating Integration Tests
	Creating Functional Tests

	Resources
	Defining a Resource Tree
	Location-Aware Resources
	Generating The URL Of A Resource
	Overriding Resource URL Generation

	Generating the Path To a Resource
	Finding a Resource by Path
	Obtaining the Lineage of a Resource
	Determining if a Resource is In The Lineage of Another Resource
	Finding the Root Resource
	Resources Which Implement Interfaces
	Finding a Resource With a Class or Interface in Lineage
	Pyramid API Functions That Act Against Resources

	Much Ado About Traversal
	URL Dispatch
	Historical Refresher
	Traversal (aka Resource Location)
	What Is a ``Resource''?
	View Lookup
	Use Cases

	Traversal
	Traversal Details
	The Resource Tree
	The Traversal Algorithm
	A Description of The Traversal Algorithm
	Traversal Algorithm Examples
	Using Resource Interfaces In View Configuration

	References

	Security
	Enabling an Authorization Policy
	Enabling an Authorization Policy Imperatively

	Protecting Views with Permissions
	Setting a Default Permission

	Assigning ACLs to your Resource Objects
	Elements of an ACL
	Special Principal Names
	Special Permissions
	Special ACEs
	ACL Inheritance and Location-Awareness
	Changing the Forbidden View
	Debugging View Authorization Failures
	Debugging Imperative Authorization Failures
	Creating Your Own Authentication Policy
	Creating Your Own Authorization Policy

	Combining Traversal and URL Dispatch
	A Review of Non-Hybrid Applications
	URL Dispatch Only
	Traversal Only

	Hybrid Applications
	The Root Object for a Route Match
	Using *traverse In a Route Pattern
	Using the traverse Argument In a Route Definition
	Using *subpath in a Route Pattern

	Corner Cases
	Registering a Default View for a Route That Has a view Attribute
	Binding Extra Views Against a Route Configuration that Doesn't Have a *traverse Element In Its Pattern

	Using Hooks
	Changing the Not Found View
	Changing the Forbidden View
	Changing the Request Factory
	Using The Before Render Event
	Adding Renderer Globals (Deprecated)
	Using Response Callbacks
	Using Finished Callbacks
	Changing the Traverser
	Changing How pyramid.request.Request.resource_url() Generates a URL
	Changing How Pyramid Treats View Responses
	Using a View Mapper
	Registering Configuration Decorators
	Registering ``Tweens''
	Creating a Tween Factory
	Registering an Implicit Tween Factory
	Suggesting Implicit Tween Ordering
	Explicit Tween Ordering
	Tween Conflicts and Ordering Cycles
	Displaying Tween Ordering

	Advanced Configuration
	Conflict Detection
	Manually Resolving Conflicts
	Automatic Conflict Resolution
	Methods Which Provide Conflict Detection

	Including Configuration from External Sources
	Two-Phase Configuration
	Adding Methods to the Configurator via add_directive

	Extending An Existing Pyramid Application
	The Difference Between ``Extensible'' and ``Pluggable'' Applications
	Rules for Building An Extensible Application
	Fundamental Plugpoints

	Extending an Existing Application
	If The Application Has Configuration Decorations
	Extending the Application
	Overriding Views
	Overriding Routes
	Overriding Assets

	Startup
	The Startup Process
	Deployment Settings

	Thread Locals
	Why and How Pyramid Uses Thread Local Variables
	Why You Shouldn't Abuse Thread Locals

	Using the Zope Component Architecture in Pyramid
	Using the ZCA Global API in a Pyramid Application
	Disusing the Global ZCA API
	Enabling the ZCA Global API by Using hook_zca
	Enabling the ZCA Global API by Using The ZCA Global Registry

	II Tutorials
	ZODB + Traversal Wiki Tutorial
	Background
	Installation
	Preparation
	Making a Project
	Installing the Project in ``Development Mode''
	Running the Tests
	Starting the Application
	Exposing Test Coverage Information
	Visit the Application in a Browser
	Decisions the pyramid_zodb Scaffold Has Made For You

	Basic Layout
	App Startup with __init__.py
	Resources and Models with models.py
	Views With views.py
	Configuration in development.ini

	Defining the Domain Model
	Deleting the Database
	Making Edits to models.py
	Looking at the Result of Our Edits to models.py
	Viewing the Application in a Browser

	Defining Views
	Declaring Dependencies in Our setup.py File
	Adding View Functions
	Viewing the Result of all Our Edits to views.py
	Adding Templates
	Viewing the Application in a Browser

	Adding Authorization
	Adding Authentication and Authorization Policies
	Adding security.py
	Giving Our Root Resource an ACL
	Adding Login and Logout Views
	Changing Existing Views
	Adding permission Declarations to our view_config Decorators
	Adding the login.pt Template
	Change view.pt and edit.pt
	Seeing Our Changes To views.py and our Templates
	Viewing the Application in a Browser

	Adding Tests
	Testing the Models
	Testing the Views
	Functional tests
	Viewing the results of all our edits to tests.py
	Running the Tests

	Distributing Your Application

	SQLAlchemy + URL Dispatch Wiki Tutorial
	Background
	Installation
	Preparation
	Making a Project
	Installing the Project in ``Development Mode''
	Running the Tests
	Starting the Application
	Exposing Test Coverage Information
	Visit the Application in a Browser
	Decisions the pyramid_routesalchemy Scaffold Has Made For You

	Basic Layout
	App Startup with __init__.py
	Content Models with models.py

	Defining the Domain Model
	Making Edits to models.py
	Looking at the Result of all Our Edits to models.py
	Viewing the Application in a Browser

	Defining Views
	Declaring Dependencies in Our setup.py File
	Adding View Functions
	Viewing the Result of all Our Edits to views.py
	Adding Templates
	Mapping Views to URLs in __init__.py
	Viewing the Application in a Browser

	Adding Authorization
	Changing __init__.py For Authorization
	Adding security.py
	Adding Login and Logout Views
	Changing Existing Views
	Adding the login.pt Template
	Change view.pt and edit.pt
	Seeing Our Changes To views.py and our Templates
	Viewing the Application in a Browser

	Adding Tests
	Testing the Models
	Testing the Views
	Functional tests
	Viewing the results of all our edits to tests.py
	Running the Tests

	Distributing Your Application

	Converting a repoze.bfg Application to Pyramid
	Running Pyramid on Google's App Engine
	Zipping Files Via Pip

	Running a Pyramid Application under mod_wsgi

	III API Reference
	pyramid.authorization
	pyramid.authentication
	Authentication Policies
	Helper Classes

	pyramid.chameleon_text
	pyramid.chameleon_zpt
	pyramid.config
	pyramid.events
	Functions
	Event Types

	pyramid.exceptions
	pyramid.httpexceptions
	HTTP Exceptions

	pyramid.i18n
	pyramid.interfaces
	Event-Related Interfaces
	Other Interfaces

	pyramid.location
	pyramid.paster
	pyramid.registry
	pyramid.renderers
	pyramid.request
	pyramid.response
	Functions

	pyramid.scripting
	pyramid.security
	Authentication API Functions
	Authorization API Functions
	Constants
	Return Values

	pyramid.settings
	pyramid.testing
	pyramid.threadlocal
	pyramid.traversal
	pyramid.url
	pyramid.view
	pyramid.wsgi

	IV Glossary and Index
	Glossary
	Index

